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,-thstract —The paper presents a survey of modern nonlinear CAD

techniques as appfied to the spcific field of microwave circuits. A nmuber

of fundamental aspects of the nonfinear CAD problem, including. simula-

tion, optimization, intermodulation, frequency conversion, stability, and

noise, are addressed and developed. For each one it is shown that either

well-estabtished CAD sohrtions are available, or at least a S6hrtion ap-

proach suitable for implementation in a general-pnrfkse CAD environment

can be ontfined. Also, the discussion shows that the various subjects are

not just separate items, but rather can be chained in a strictly logicaf

seqnence. Finally an elementary treatment of vector processing is given, to

show that supercomputers can handle the involved large-size numerical

problems in a most efficient way.

I. INTRODUCTION

T HIS PAPER surveys the application of computer-

aided techniques to the problem of nonlinear micro-

wave circuit simulation for engineering purposes.

For years, the general topic of nonlinear networks has

been a favorite among circuit theorists, as is clearly shown

by the large amount of related technical literature. As an

example, a search in the INSPEC data base revealed no

less than 4000 papers devoted to this subject in the last

eight years. More recently the interest in nonlinear circuit

techniques has begun to spread inside the microwave com-

munity, so that at present one or more nonlinear sessions

usually show up in the technical programs of all major

microwave meetings. The reasons for this increasing popu-

larity are not difficult to understand, and are closely linked

to the advance of microwave technology.

One first obvious aspect is that the ever-increasing

miniaturization of microwave circuits, with reduced ability

to trim, calls for more powerful and general design capa-
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bilities. In this respect, nonlinear circuit CAD may be

essentially viewed as the extension of classic CAD to

problems that have traditionally been treated by serniem-

pirical approaches.

There is, however, another aspect, which is more prom-

ising, though more projected into the future. The matura-

tion and spread of MMIC tec~ol[ogy are facing us w@h a

dramatic evolution of the traditional concepts of circuits

and systems, which tend to be identified as long as more

and more interconnected subsystems tend to merge into a

single chip. At the same time it becomes ificreasingly

difficult, if possible at all, to treat subsystems as individual

items that can be separately specified and designed. Not

surprisingly, a major impulse to the development of mono-

lithic gallium arsenide circuits is being given by systems

firms. In order to be useful, CAD techniques must obvi-

ously keep pace with technological reality, which means

that conventional circuit-oriented CAD must evolve into

modern system-oriented CAD. This involves the need for

nonlinear capabilities, since system performance always

requires nonlinear functions, and the ability to deal with

very large size problems. From this viewpoint, nonlinear

circuit CAD marks an essential step toward the techno-

logical update of computer-aided techniques.

In the authors’ opinion, this clearly establishes the pres-

ent trends in nonlinear microwave CAD. On the one hand,

we have the circuit design problem, ari intriguing one with

several interrelated aspects, a tentative list of which is

given below:

● analysis (simulation) of a knc)wn circuit;

● optimization of a nonlinear circuit;

c multiple-frequency excitation (in”termodulation);

● frequency conversion (mixing); -

● stability analysis;

● noise analysis.

Some of these are very popular, while others have seldom

been touched on in the technical literature. What the paper

tries to do in this respect is to show that the state of the art
of nonlinear microwave CAD allows us to envisage a

complete set of software tools covering all these aspects

within the frawework of a substantially unique philosophy.

These tools are truly general-purpose in the CAD sense,
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which means there are no restrictions on circuit topologies,

device representations, or electrical functions. To a certain

extent this requires some anticipation, since some of the

problems already have well-established solutions, while

others are still at the stage of conceptual development.

On the other hand, the extension of circuit CAD to

cover system requirements may be expected to introduce at

least one major new difficulty, that is, the very large size of

the related numerical problems. This may arise both from

the complexity of circuit topologies including several inter-

acting subsystems, and from the need to deal with broad

frequency spectra, possibly encompassing the MHz as well

as the GHz regions. In this respect, we try to demonstrate

that a key tool for ‘the solution of this additional problem

can be provided by one of the best-known concepts of

modern computer science, namely parallel processing, and

by its most common present-day implementation, repre-

sented by supercomputers. Supercomputers have the

potential of extending to the nonlinear CAD domain all of

the design issues that are now commonplace in linear

CAD, and of making them as handy as their linear coun-

terparts.

Of course, for this to become possible, all aspects of the

general simulation problem should be consistently devel-

oped, especially passive and active device modeling. How-

ever, this paper is not going to touch on such aspects since

they are covered by specialized presentations in this same

issue, but rather will be devoted to methodology.

II. SIMULATION

The simulation of nonlinear circuits is by far the most

popular aspect of the entire job. Considerable effort and

considerable ingenuity have been spent in devising new

nonlinear analysis methods or improvements to existing

ones. During the 15th European Microwave Conference, in

Paris, an entire tutorial session was devoted to this subject

[1]; thus to avoid duplications as far as possible, only a

schematic classification and a brief highlight of some of

the best-known approaches will be reported here.

In Table I a number of analysis algorithms are organized

according to the type of description they adopt for the two

fundamental kinds of circuit components, the linear and

the nonlinear ones. Attention here is restricted to those

methods that we could name “quasi-exact,” i.e., that ad-

dress the problem in a rigorous way except for numerical
approximation, and do not rely upon a prkwi limiting

assumptions such as weak nonlinearity or almost-mono-

chromatic operation.

A. Time-Domain Methods

A huge amount of technical literature is available on the

general topic of nonlinear circuit simulation in the time

domain, concerning both theoretical and computational

aspects. $nerally speaking, this work is not oriented

toward microwave applications; thus it is beyond the scope

of this paper to survey it. For the present purposes it will

be sufficient to quote a number of special issues of the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS [2]-[5],
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where several review papers and a very extensive bibliogra-

phy on the subject can be found. In particular, a review of

the best-known time-domain simulation programs is given

in [6].

A specific effort aimed at the extension of time-domain

techniques to cover microwave applications is currently

being made by several research groups [7]-[13]. An exam-

ple of a microwave-oriented time-domain computational

scheme is briefly outlined below. The’ use of suitable

models of nonlinear capacitors and inductors leads to an

equivalent circuit containing resistors and controlled

sources as the only nonlinear components [13]. The circuit

may thus be described in terms of a state vector ‘of

capacitor voltages, inductor currents, voltages at the trans-

mission-line ports, and nonlinear resistor control variables.

Combining Kirchhoff’s laws with the voltage–current rela-

tionships of the circuit components results in the following

set of coupled differential–difference and algebraic equa-

tions with constant coefficients:

dxl
—= A1x+l?lu+C1:
dt

x2= A2x(t–~)+B2u(t–~)

o= A31xl+A32x2 +B3u+F(x, u,t)

~= A4X+B4U+C4: (1)

where

xl vector of lumped state variables,

X2 vector of distributed state variables,

X3 vector of nonlinear resistor contzol variables,

x overall state vector,
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A, B, C time-independent circuit matrices,

u source vector,

~ transmission-line delays,

F vector of nonlinear resistor characteristics,

Y output vector.

The system (1) is directly solved in the time domain by a

suitable integration scheme [14], [15], requiring the solu-

tion of a set of nonlinear algebraic equations at each

iterative step. The starting point is usually chosen as the

result of a dc analysis.

Apparently, methods that work entirely in the time

domain should represent the most natural and straightfor-

ward approach to the simulation problem. As a matter of

fact, real-world circuits do work in the time domain, and

semiconductor devices are naturally described in the time

domain, too. However, such methods generally suffer from

two major inconveniences. First of all, the only available

means of accurately computing and measuring linear mic-

rowave components is to work in the frequency domain

under sinusoidal excitation, except of course for elemen-

tary ones. Thus the difficulties come from the time-domain

analysis of the linear subnetwork whenever realistic com-

ponent models are to be dealt with. For instance, the

description of a device as simple as a rnicrostrip line with

frequency-dependent propagation constant and character-

istic impedance still represents a problem in the time

domain. Of course, in principle one could think of such

approaches as frequency-domain to time-domain conver-

sions and convolution integrals [16], [17], but the practical

feasibility of this still has to be demonstrated. The second

point is numerical efficiency. An analysis based on the

direct integration of the time-domain network equations

would typically spend most of its computational effort on

transient evaluation, while most of the user’s interest is

concentrated on steady-state information. To give a repre-

sentative idea of what tl$s means quantitatively, let us

consider, for instance, some of the numerical results pre-

sented in [12]. Fig. 3 of this paper shows that the analysis

of a circuit as simple as a biased FET without anything

else requires the consideration of at least ten RF periods to

reach steady state when using SPICE, one of the best-

known time-domain simulators [18]. Similar conclusions

are reached in [19]. &so, the situation may be definitely

worse for more complicated circuits, not to mention spe-

cial cases involving Mgh-Q components, such as dielectric

resonators.

For this reason, considerable effort has been spent by

circuit theorists in devising techniques allowing the calcu-

lation of the transient to be at least partially bypassed and

the steady state to be reached quickly. The basic concept is

usually the evaluation of a set of initial conditions from
which the network starts in periodic steady state. The

so-called shooting methods [20]–[23] consist of a direct

search for such initial conditions by a Newton iteration or

some other nonlinear optimization technique. An alterna-

tive approach is to compute the state of the circuit at a

number of instants by time-domain integration, and then

to extrapolate from these by algebraic methods the state

from which the network starts in time-periodic regime [24].

We limit ourselves to this brief mention because the appli-

cation of these approaches to microwave circuits has been

only marginal.

A limiting form of the same ideas is represented by

those methods that completely disregard the transient and

directly focus on the steady state. The physical unknowns

of the problem are still represented by state-variable wave-

forms, but the formulation is such that these waveforms

are a priori guaranteed to be time-periodic. Fcw numerical

purposes the waveforms are approximately described by a

discrete set of scalar unknowns; if the discretization is

carried out in the frequency domain this leads to

harmonic-balance methods.

B. Harmonic-Balance Techniques

A quick review of the fundamentals of this approach is

worthwhile because of the key role it plays in modern

nonlinear CAD techniques. The network is first decom-

posed into a linear and a nonlinear multiport subnetwork

having the same number of ports, n ~. The subdivision

criterion usually represents a tradeoff between two oppo-

site needs: on the one hand, n ~ should be kept to a

minimum for optimum numerical\ efficiency, while on the

other, increasing the number of ports usually makes for an

easier description of the nonlinear subnetwork.

The latter is represented by a set of time-domain nonlin-

ear equations. Although this can be done in a ‘number of

ways, for the sake of generality and for later convenience

we shall make use of the following system of parametric

equations:

[

d ‘X

v(t)=~ x(t),:, .”.= 1
[ dnx

i(t)=+ x(t),~,...~ 1 (2)

where o and i m-e vectors of instantaneous voltages and

currents at the nonlinear subnetwork ports, and x is a set

of time-dependent quantities used as state variables. + and

+ are nonlinear and analytically or numerically known.

The linear subnetwork is described in the frequency

domain. For maximum generality its equations are written

in the form ,,

A(cJ)v(Ld) +B(kI)z((d) +D(6J)=o (3)

where A and B are circuit matrices, V and 1 are vectors of

voltage and current phasors at the network ports, and D is

a set of driving functions. For a well-conditioned network

all vector quantities appearing in (2) and (3) have the same

size n ~.
In steady state, the state-variable waveforms are ap-

proximated by

NH

x(f) = ~ X~exp(jkuOt)
k=– NH

(x*~ = x~, * = complex conjugate), where

(4)

UO is the
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fundamental angular frequency of the time-periodic reg-

ime. Thus the steady state is completely identified by the

vector X of all X~’s (state vector).

The circuit analysis problem now consists of finding the

state vector X in such a way that the time~dornain voltages

and currents obtained from (2) through (4) have spectral

components satisfying (3) at o = /c@O(O < k < NH). Mak-

ing use of the fast Fourier transform, one obtains the

nonlinear solving system

E(x) =0 (5)

where the k th subvector of E, namely

E~(X) =A(kao)@~(X) +B(k~o)V(X)+D(koo) (6)

(O< k < NH) is a set of harmonic-balance errors at ktoo.
Note that (5) is equivalent to a system of

N=rzD(2NH+l) (7)

real equations in as many real unknowns. Thus for a

forced or nonautonomous circuit, the problem is well

posed from a mathematical viewpoint. For an autonomous

circuit of given topology (D(k~O) = O for k #O, A, B

a priori assigned), only dc solutions will exist in general.

Nonstatic solutions may, of course, exist for some values

of the fundamental, so that UO must be regarded as an

additional real unknown in (5). As a consequence, one of

the remaining real unknowns (e.g., the phase of one of the

harmonics) may be arbitrarily chosen, and the electrical

regime is invariant with respect to a shift of the time

origin. Note, however, that this situation is somewhat

unusual in microwave engineering practices: most often

one is faced with oscillator design problems whereby ~0 is

a priori fixed as a design goal. The required degree of

freedom must then be available under the form of a free

circuit parameter, so that the problem becomes one of

circuit optimization from the CAD viewpoint (see Section

III).

The method outlined above is known as the “ piecewise”

harmonic-balance technique [25], and has the advantage

that the required number of state variables is equal to the

number of linear subnetwork ports, no matter what the

actual number of lumped or distributed reactive compo-

nents. Thus the problem size is considerably reduced with

respect to time-domain techniques and to earlier imple-

mentations of the harmonic-balance concept [26]. As an

alternative to the piecewise harmonic-balance technique, a
nodal analysis approach has also been proposed in [27].

The same reference also provides an in-depth review of

harmonic-balance concepts.

Note that the harmonic-balance method takes advantage

of the most accurate and straightforward approach to the

simulation of both linear and nonlinear circuit compo-

nents.

Harmonic-balance techniques have been used very ex-

tensively in the technical literature to analyze virtually any

kind of nonlinear microwave subsystem. Most applications

are based on the general guidelines presented above, ex-

cept for minor details. On the other hand, a number of

different strategies have been developed in order to solve

numerically the system (5). Some of these deserve a brief

discussion because of their conceptual importance and

widespread acceptance.

1) Direct Methods: The conceptually simplest way to

solve the problem is to directly apply to (5) any numerical

system-solving algorithm. Such solution routines are avail-

able in virtually all mathematical libraries (e.g., CERN,

IMSL). For well-behaved circuits (e.g., weakly nonlinear),

a simple Newton iteration is often sufficient to quickly

achieve convergence: this is usually the case for circuits

containing only FET’s as the active elements.

As a more robust, but less efficient, alternative [28], one

can use a nonlinear optimization scheme to minimize the

objective function

E(X) = llE(X)/1 (8)

representing a combined harmonic-balance error (II \I in-

dicates the norm). Of course, some care must be taken in

choosing the numerical algorithm. In the user-oriented

CAD perspective, it is absolutely mandatory that the anal-

ysis algorithm be able to reach convergence starting from

initial values automatically set by the program in a con-

ventional way; this means that there is no starting-point

information available. An effective though obvious way to

obtain this result is to approach the solution by a direct

search scheme and then to refine it by a Newton iteration.

Excellent results have been reached by Powell’s method

[29]. Quasi-Newton methods [30] also yield satisfactory

performance: in a sense they represent a different imple-

mentation of the same concept, since they also rely upon a

combination of one-dimensional searches and gradient

iterations. The starting point may be just taken as zero for

nonautonomous circuits; for self-oscillating networks it is

usually better to initially set to a suitable nonzero value

the magnitude of the harmonic that most directly affects

the circuit output power. This has the effect of avoiding

the static solution, which generally exists in the autono-

mous case.

2) Continuation Methods: Convergence of direct itera-

tive approaches may sometimes be improved by continua-

tion methods [31], which have been successfully applied to

nonlinear microwave circuit problems by several authors

[32] -[35]. In this case, the original problem (5) is replaced

by an auxiliary one of the form

F(x, p) =0 (9)

where F is continuously dependent on a parameter p. The

auxiliary problem (9) is defined in such a way that a

solution X 0 is known for a certain value, say O, of the

continuation parameter, and that the original problem is

reobtained for a different value, say 1. Thus

F(X’3,0) = o

F(X,l)=E(X). (lo)

The required solution X can now be generated starting

from the known vector XO by a step-by-step mechanism,

through a sequence of intermediate solutions correspond-

ing to increasing values of p. Each intermediate step is
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obtained by solving a nonlinear problem which is very well

conditioned, because its starting point and solution can be

made as close as desired by making correspondingly small

the step of the continuation parameter. Multiple solutions

can be found by extending the generation of the solution

curve beyond the first operating point, of course in the

case where the curve itself bends back towards the p = 1

position. Very sophisticated algorithms available in the

literature allow the path to be followed across the turning

points [36].
It is not easy to establish in general whether or not the

use of a continuation- method does yield a consistent

performance improvement with respect to the correspond-

ing direct solution approach. The authors’ experience tends

to show that they are roughly equivalent from the view-

point of computational efficiency. In principle, continua-

tion methods guarantee that a solution can always be

reached by taking sufficiently small steps of the continua-

tion parameter, while obviously direct methods do not

provide the same assurance. On the other hand, direct

methods are very simple and flexible, and lend themselves

nicely to the implementation of circuit optimization

schemes, as will be shown later on.

In both cases, a key step for obtaining good computa-

tional efficiency is to make use of the gradient evaluation

algorithm outlined below [27], [37]. This mechanism is

based on the assumption that the Jacobians of the nonlin-

subnetwork ports, and it is assumed that the corresponding

circuit matrix of the linear subnetwork exists.

Let the complementary set of voltages and currents be

denoted by y(t), and its vector of harmonics by Y. The

time-domain analysis of the nonlinear subnetwork by (4)

and (2), agd the subsequent use of the FFT then establish

a relationship of the form

Y= z’(x)) (13)

where T is a (numerically definecl) nonlinear vector oper-

ator. The frequency-domain equations of the linear subnet-

work are now written as

X= HY+D (14)

where H is a hybrid matrix and D represents a set of

driving functions (D # O). Combining (14) with (13) leads

to the solving system

X= HT(X)+D=F(X) (15)

which is now formulated as a fixed-point problem of the

vector nonlinear operator F. This is naturally suited for a

relaxation approach; if the i th estimate of the state vector

is denoted by X(i), the most obvious iteration scheme is

defined by

x(~+l) = ~[x(o]. (16)

ear subfietwork eq~ations (2) with respect to the state It .

variables and to their time derivatives are available in
1s quite clear that this approaclh is potentially attractive

because of its reduced computational cost; however,
closed form and can be represented by Fourier expan-

its reliability is limited because convergence cannot be
sions:

a priori gua~anteed [38].

$ = ~C.,Pexp(jpcoOt)
To improve the rather poor convergence properties of

m P
the direct iteration (16), more sophisticated iteration

schemes have been proposed. An effective and popular

~= ~Dm,pexp( jptiot) (11)
one, which was successfully applied to diode and FET

P
circuits [40] –[42] uses the following update mechanism:

where ym = d ‘x/dt’, 0< m <n. As we shall see, these

expansions play an important role in the solution of the

generalized mixer problem and of the related problems of

stability and noise analysis. Once the coefficients C%,~,

D have been found by the FFT, the Jacobians of the

h~~~onics @~, T~ with respect to the state-variable

harmonics may be expressed as [37]

Note that all vector quantities appearing in (11), (12) have

the same size n ~ (i.e., the number of nonlinear subnetwork
ports).

3) Relaxation Methods: As an alternative to the search

strategies described above, the harmonic-balance equations

may be solved by relaxation methods [40]–[45]. In the

simplest approach, the vector of state variables x(t) is

chosen as a set of n ~ voltages or, currents at the nonlinear

x(z+O = p(~)~ [X(O] + [1 – p(O]x(O (17)

where P(’) is a diagonal matri~ of iteration-dependent

convergence parameters, and 1 is an identity matrix.

Although (17) can be brought to perform much better

than (16) by a suitable choice of the convergence parame-

ters, its convergence properties still remain critically re-

lated to the specific aspects of each individual problem,

and in particular to the impedance level of the nonlinear

subnetwork [41]. Low impedances improve convergence

when voltages are chosen as the independent variables,

and conversely. This criticality can be easily inferred, for

instance, from [41, fig. 6]. In this case a 5-$J change of the

nonlinear subnetwork impedance separates a condition of

optimum convergence rate from one where convergence is
not achieved at all. An important consequence of this

situation is that the choice of the state variables is usually

not free, but rather is dictated by the frequency behavior

of the linear subnetwork. In turn, this implies that the

time-domain analysis of the ncmlinear subnetwork may

require the integration of a set of differential equations
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[41]. Think, for instance, of a varactor diode for which the

current rather than the voltage has to be used as the state

variable in order to obtain convergence. In such cases, the

computational advantage of relaxation methods with re-

spect to direct solution methods becomes questionable.

It is noteworthy that the convergence properties may be

improved by resorting to even more complex iteration

strategies. As an example, x(t) and Y(t) could be defined

as two independent combinations of all voltages and

currents at the nonlinear subnetwork ports, which of course

can lead to considerably increased complication in the

numerical definition of the nonlinear operator F. A good

choice turns out to be the use of incident and reflected

waves, rather than voltages and currents, as the state

variables, since this takes advantage of the subunitary

nature of the scattering matrix [43]. A very well known

approach falling within this class is Kerr’s multiple-reflec-

tion method [39].

The above discussion makes it clear that relaxation

methods are not ideal candidates for general-purpose CAD

applications or for nonlinear circuit optimization because

of a certain lack of reliability. Furthermore, they are

usually not very well suited for analyzing nonlinear circuits

having multiple operating points, such as oscillators or

frequency dividers. On the other hand, relaxation methods

can represent an excellent choice for specialized applica-

tions, or as a backup to conventional harmonic-balance

techniques in general-purpose programs.

C. Other A nalysis Approaches

To conclude this brief and by necessity incomplete

survey of nonlinear analysis methods, we would like to

mention two other approaches that are potentially interest-

ing, but of course do not share the maturity and widespread

acceptance of the previously described ones.

One of them is referred to as the “power-series” method

in Table I [45]. It is a harmonic-balance technique, but is

based on a generalized power-series description of the

nonlinear components [46], [47]. Once this has been devel-

oped, which is not necessarily an easy job, all required

calculations may be carried out in the frequency domain,

thus avoiding any time-consuming Fourier transforms.

The other one, which was arbitrarily named the “ sam-
ple-balance” method in Table I, may be viewed in a sense

as the dual of harmonic-balance techniques. It relies upon

a direct time-domain approximation of the state-variable

waveforms by suitable basis functions such as periodic

cubic splines [48], [49], and uses time-domain samples as

problem unknowns. The errors to be minimized are pro-

duced by comparing time-domain samples of the linear

and nonlinear subnetwork ,responses. The linear subnet-

work is analyzed in the frequency domain and its time-

domain response to an elementary excitation is found once

for all by Fourier transformation; at any subsequent step

the time-domain response to a general driving force is

simply found by linear superposition.

III. OPTIMIZATION

From the general CAD viewpoint, circuit optimization

obviously represents a most important goal, and a natural

follow-up to the analysis problem. In the linear CAD case,

the transition from the latter to the former is stepless: once

a suitable analysis algorithm has been developed, this can

be coupled to a minimization program-in the simplest

case an off-the-shelf one— to produce an optimization-

based design capability. Unfortunately this is not true in

the nonlinear case, which could give a possible explanation

of the striking disproportion between the considerable

number of studies in the technical literature devoted to

analysis methods arid the sporadic attention paid to opti-

mization. According to the authors’ experience, there are a

few basic reasons for this, which can be synthesized as

follows.

As a first point, a full analysis of a nonlinear microwave

circuit is typically too time-consuming to be effectively

used as the objective-function generation mechanism within

an optimization loop. A straightforward consequence is

that the conventional linear optimization scheme is not

applicable to nonlinear circuits: in fact, using a steady-state

analysis to generate the objective function to be minimized

would result is exceedingly large computer costs. Nonlin-

ear circuit optimization thus requires the development of

specialized algorithms based on the integration of the two

fundamental aspects of circuit analysis and function mini-

mization. The general rule is that the approach adopted

should not require a full nonlinear analysis to be carried

out at each step of the optimization loop. If we accept this

viewpoint, we can go over the various analysis algorithms

to understand whether or not they are potentially useful

for optimization purposes. The most obvious candidates

are those methods treating the analysis itself as an optimi-

zation problem, since any constraint arising from electrical

specifications can be added to the objective function in a

simple and straightforward way.

One of the first attempts to apply these principles in

conjunction with time-domain methods, and more pre-

cisely shooting methods, was reported by Director and

Wayne Current in 1976 [50]. Their approach is briefly

described below. As in conventional shooting methods

[20] -[23], the unknowns area set of initial conditions from

which the network starts in periodic steady state. If the

vector of state variables is denoted by x(t), such condi-

tions will be represented by x(0). These unknowns are now

complemented by a set of linear circuit parameters, namely

p, so that the overall set of designable parameters is given

by

u= [x~(o), p~y - (18)

the superscript T denoting transposition. The objective

function to be minimized is defined as [48]

F(U) =~G{E1[x(t), ZJ, t] +E2[x(t), t7, t]} dt (19)

where TO= 2n/ti0 is the steady-state period. In (19), E2



RIZZOL1 AND NERI : NONLINEAR MICROWAVE CAD TECHNIQUES 349

represents a suitable performance function arising from

the design specifications, while El has the expression

E1[x(t), U,i] = [x(t) -x(o)]$ (20)

and thus introduces the steady-state condition. The state

x(t) is obtained by a time-domain integration of the usual

circuit equations with starting point x(0). To solve the

problem, the objective F is simultaneously minimized with

respect to the whole set of unknowns U.

Note, however, that this attempt was partially unable to

meet its main goal, that is, the elimination of any complete

steady-state nonlinear analysis within the optimization

loop. In fact it was found [50] that a steady-state analysis

had to be performed before every gradient evaluation of

the quasi-Newton algorithm adopted. (ltherwise the itera-

tion would often converge upon a set of initial conditions

that were found not to represent a steady state after

running a time-domain analysis over many cycles.

This experience clearly suggests that the aforementioned

optimization concepts can only be brought to a fully

satisfactory implementation in conjunction with those

methods that a priori guarantee the periodicity of the

electrical regime, such as harmonic-balance techniques.

An approach to nonlinear circuit optimization based on

the harmonic-balance concept is outlined below [51], [52].

This time the set of designable parameters is

u= [X’, p’]= (21)

where X is the vector of all state-variable harmonics. The

objective function arises from two contributions, one of

which is the harmonic-balance error, while the other

originates from the design specifications. We thus have

F(U) = [IIE(U)112 +E;(U)]1’2 (22)

which appears as an extension of the objective (8) used for

a plane analysis. The second term, E2, is defined in such a

way that E2 = O when all specifications are met, and

E2 >0 otherwise [51].

Once again, to solve the problem, F is minimized with

respect to U by any nonlinear programming algorithm.

However, this time the numerical procedure turns out to

be very robust and reliable, and to be successfully applica-

ble to both forced and autonomous circuits [53], [54]. The

need for repeated nonlinear analyses is completely

eliminated, and the gap between analysis and design CPU

time requirements is effectively bridged. This partly hap-

pens because the number of unknown circuit parameters is

usually small with respect to the number of harmonics in a

well-posed problem, and partly because the availability of

some degrees of freedom in the linear subnetwork often
makes it easier for the minimization algorithm to reach the

harmonic balance.

It is worth mentioning that the ability to carry out a

constrained harmonic-balance analysis also allows some

typical limitations of this class of techniques to be easily

overcome. As an example, in an autonomous circuit the

static solution of the circuit equations may be eliminated

just by requiring a finite output power. Similarly, multiple

operating points may be detectedl by adding suitable per-

formance specifications [37], even if they do not belong to

the same solution path from the viewpoint of continuation

methods [35].

The high degree of maturity achieved by the technique

described above leads to the easy prediction that any other

conceptually related analysis algorithm may be success-

fully used in a quite similar way for optimization purposes.

This is obvious, for instance, for the power-series method

that was mentioned previously, since this is still a

harmonic-balance approach, makdng use of a frequency-

domain, rather than time-domain, device description.

Another good candidate is what we called the “sample-

balance” technique: in this case the unknowns to be

simultaneously optimized would be represented by linear

network parameters and time-domain samples of the

state-variable waveforms.

Continuation methods have also been shown to be us-

able for nonlinear circuit optimization [32]–[34]. The un-

derlying idea is still to avoid any full nonlinear analysis to

be carried out within the minimization loop; however, this

is now obtained by the typical philosophy of this kind of

approach. The objective is optimized by a sequence of

one-dimensional minimizations making use of a direct-

search strategy such as Powell’s method [29]. A regular

analysis of the starting point is first performed by the

standard stepped-parameter approach. In all subsequent

objective-function evaluations the parameter is kept con-

stant. Continuation is applied with respect to the circuit

variables to generate the required steps of each one-dimen-

sional search: the basic concept is essentially to keep small

enough the steps along the search direction.

In this way every objective-jfunction evaluation does

require a nonlinear analysis, bul this can be performed

much more quickly than a regular one because a starting

point very close to the solution is always available. The

result is an order-of-magnitude speedup with respect to a

brute-force optimization approach. However, the overall

procedure is less efficient than the direct optimization

described earlier, because the computation of the objective

function is slower, and the one-dimensional search strategy

is not optimal due to the limitations on step size.

An Example of Application

At this stage, we would like to discuss a simple example

which is intended to give a feeling of what a powerful

design tool a harmonic-balance optimization program may

represent, and how deep an insight into circuit behavior

can be obtained by this kind of technique. We consider the

circuit depicted in Fig. 1 and we assume for the time being

that the feedback branch Al? is cut away so that we are

simply left with a biased FET with input and output

matching networks. It is quite clear that this topology can

be used to do almost anything provided that the matching

sections are suitably chosen. We assume that the circuit

has to work as a regenerative frequency divider by two.

For this purpose the input section is designed as a band-
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Fig. 1. Schematictopology of amicrostrip regenerativefrequencydivider

stop filter at the output frequency, and conversely, and the

remaining degrees of freedom are optimized together with

six gate and drain voltage harmonics for a conversion gain

of O dB with an input power level of 6 mW at 9.4 GHz.

What happens is that the optimization fails to converge,

even though more complicated matching network topolo-
gies and different input drive levels are tried. An inspec-

tion of the results clearly shows the reason for this: the

output frequency components cannot be balanced at the

FET gate, because the device has an input impedance with

a significant real part but is reactively loaded by the input

filter. The two possible solutions are to suppress the input

filter, which is obviously undesirable, or to introduce some

degree of parallel feedback, such as connecting nodes A, B

by an LC branch, as shown in Fig. 1. Once this has been

done, the circuit can be designed with no further complica-

tions, and a behavior in agreement with experimental

observations [55] can be predicted,

Of course, in this case the answer was a priori known,

but the general principle still remains valid: even an unsuc-

cessful optimization may provide useful design informa-

tion, because the available circuit description is so detailed

as to make it normally easy to find out where the difficul-

ties come from. It is worth mentioning that the application

of time-domain techniques to the same problem would

only lead to the obvious result that the initial topology

behaves as a low-efficiency frequency multiplier, with no

indications on how the final goal could be met.

IV. MULTIPLE-FREQUENCY EXCITATION

The preceding discussion referred to nonlinear circuits

supporting strictly time-periodic electrical regimes, de-

scribed by a truncated Fourier expansion of the form (4).

However, all results are equally valid for a quasi-periodic

regime containing all possible intermodulation products of

a number of non–harmonically related “exciting tones.” In

this case the mathematical representation (4) of the steady

state is replaced by

“t’=;xkexdj?kod(23)

(X:k = X,), where o, is the angular frequency of the ith

exciting tone. Truncation is now performed by taking into

account only those intermodulation products whose order

does not exceed a prescribed integer [56], that is,

~lkzl < NH. (24)

It is worth mentioning that the term “exciting tone” should

be interpreted herein the very broad sense of any sinusoidal

signal existing in the circuit, independent of its physical

origin. This includes sinusoidal pumps and autonomous

oscillations, as well as any parametric or spurious tone that

the circuit might generate.

With respect to the strictly periodic case, dealing with a

quasi-periodic regime does not introduce any special con-

ceptual difficulty; problems that do arise are essentially of

a practical nature and invariably relate to numerical ef-

ficiency.

In the time domain, a direct integration can be

performed in the usual way, independent of the num-

ber of sources acting in the circuit, until steady state is

reached. However, in this case the steady state may have

quite a long period—theoretically may not be periodic at

all— which makes it difficult to determine how long it

takes for the transient component to die out. Furthermore

some typical multitone circuits, such as mixers with a low

IF, may contain large time constants with respect to the

RF period, which in turn may considerably slow down the

achievement of steady-state conditions. Once again, some

improvement may be obtained from shooting methods.

For instance, Chua and ~shida [57] describe an algorithm

based on a combination of shooting methods and least-

squares waveform approximation, yielding both the initial

point from which the network starts in steady state, and

the Fourier coefficients of the steady state itself. However,

the overall job still remains computationally heavy;

frequency-domain methods are more appealing because of

their ability to directly focus on the steady state.

From the standpoint of harmonic-balance techniques

the critical step is the evaluation of the frequency-domain

response of the nonlinear subnetwork to a quasi-periodic
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input. In the case of commensurate frequencies, one could

simply replace the quasi-periodic regime by a strictly peri-

odic one by taking the greatest common divider of the

exciting tones as the fundamental, and then proceed in the

usual way [58]–[60]. Of course, if the fundamental is too

low, the required sampling rate, and the corresponding size

of the Fourier transforms, may turn out to be so large as to

make this approach totally impractical. An efficient alter-

native is using a multidimensional grid of sampling points

associated with multidimensional Fourier analysis to solve

the problem [61]. This method has the advantage of being

directly applicable to any combination of exciting frequen-

cies, whether or not they be commensurate, with computa-

tional times independent of the actual frequency values.

Another possible approach [62] is to carry out the trans-

form by solving a linear system based on a nonuniform

sampling scheme, whereby the sampling points are chosen

so as to avoid ill-conditioning of the solving system.

These straightforward solution schemes are somewhat

time-consuming, but have the advantage of programming

simplicity, and provide a quasi-exact reference which can

be used to establish the accuracy of approximate solutions.

As a matter of fact, a number of numerical procedures

have been developed with the aim of reducing the compu-

tational burden of the harmonic-balance treatment of

quasi-periodic regimes. For the sake of brevity we shall

limit ourselves here to a short mention of some of the

best-known and conceptually more relevant ones.

In [56] the response of the nonlinear subnetwork to a

multitone excitation is uniformly sampled in the time

domain. These samples are approximated in the least-

squares sense by a generalized Fourier series of the form

(23), thus producing an estimate of the spectral compo-

nents of the nonlinear response.

In [63]–[65] the nonlinear subnetwork response is sam-

pled at a much lower rate than the Nyquist rate, and

Fourier transformed. To eliminate aliasing effects, the

process is repeated a number of times with suitably shifted

input spectra, and the resulting output spectra are linearly

combined.

In [35] the original sparse spectrum (groups of lines

separated by large gaps) is mapped onto an auxiliary dense

spectrum (little or no gaps) by selecting a suitable set of

conventional source frequencies. Calculations are carried

out on the auxiliary spectrum, requiring a drastically re-

duced sampling rate.

In [66] each spectral component of interest is first shifted

to dc by performing a frequency shift over the entire

spectrum, and is then isolated by passing the shifted signal

through a digital bandpass filter of suitable bandwidth.

Finally, a special mention is deserved by the power-series

approach [67], [45], [68]. In this case the input and output

spectral components are algebraically related by an ex-

plicit formula, which was developed by several authors in a

number of subsequent steps [69]–[72], so that Fourier

transforms are eliminated from the numerical procedure.

Computational accuracy then only depends on the reliabil-

ity of the power-series representation of the nonlinear

subnetwork, and in particular on its convergence proper-

ties.

V. FREQUENCY CONVERSION

An approximate solution has also been developed for

the special case of a nonlinear circuit driven by two

sinusoidal signals, one being very weak with respect to the

other. This is commonly referred to as the mixer case, and

is obviously very important from the technical viewpoint,

which explains the good deal of attention that has been

devoted to this specific subject. For once, there is almost

general agreement in the technical literature as to how a

mixer analysis problem should be dealt with. The com-

monly adopted approach relies upon the concept of the

conversion matrix of the nonlinew- subnetwork [73]–[80].

The basic idea is to consider the weaker, or radio-frequency

(RF), signal as a small perturbation of a time-periodic

steady-state regime, which may be established either by

pumping the circuit with the stronger signal–-the local

oscillator (LO)— or by self-oscillation. The nonlinear sub-

network equations are then linearized in the neighborhood

of the steady-state regime to find the circuit response to

the injection of an additional smlall RF signal. Note the

conceptual similarity of this approach to the conventional

linearized description of the small-signal operation of a

nonlinear device around a fixed bias point. As we shall see

this analogy is of considerable help for an intuitive com-

prehension of a number of related topics, such as stability

and noise.

In the mixer case, the periodic time dependence of the

unperturbed regime leads to the generation of intermod-

ulation products which in mixe~ terminology are called

sidebands. Due to the assumed smallness of the RF signal,

however, the situation is considerably simpler thrm for a

general two-tone excitation, since only first-order products

in co~ may be retained. Let the steady-state regime estab-

lished under LO drive with the RF signal suppressed be

denoted by ~(t). Then the quasi-periodic regime under

combined LO and RF excitation is represented to first

order by

[ 1x(t) =~(t) + Re ~AX~exp {j(u~+kuO)t} (25)
k

where @o,OR are angular frequencies of the LO and RF

signals, and AX~ is a vector of spectral components at the

k th sideband. Similar expressions hold for the voltages

and currents at the nonlinear sub network ports (with AXk

replaced by AV~, Alk, respectively).

If the nonlinear subnetwork equations (2) are now lin-

earized around i(t), linear relationships are established

between the sideband amplitudes AX~, AVk, AIk. We can

express such relationships by the compact matrix notation

AV=PAX

AI=QAX (26)

where AX is the vector of all AXk’s, and similar. We call

(26) the conversion equations of the nonlinear subnetwork.

In particular, if Q or P is nonsingular, we can eliminate
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AX between eqs. (26) and write

AV=PQ-l AI= ZCAI (27)

or

AI= QP-lAV= YCAv (28)

where ZC, Y= are the impedance conversion matrix and the

admittance conversion matrix of the nonlinear subnet-

work, respectively.

The time-domain description (2) of the nonlinear sub-

network lends itself nicely to a straightforward computa-

tion of the conversion matrices for a general nonlinear

device [80]. In this case the Jacobians (11) must be avail-

able, since they are required to carry out the linearization.

Making use of the expansion coefficients defined by (11),

we introduce the square matrices of size n ~:

k,p = ~:o{~(% + b)}m%,P

Qk,p = ~go{j(% + ‘@O)}m%,p
(29)

where n is defined in (2). Then the conversion matrices

P, Q appearing in (26) are defined by [80]

P= [P~,,-J

f2=[Qk,s-k] (30)

where s acts as the row index, and k as the column index,

of the generic (n ~ X n ~ ) submatrix. If NH harmonics are

retained to describe the local-oscillator regime, so that

– NH< k <NH as in (4), then the truncated size of the

conversion matrices is given by the same number N =

n ~(2N~ + 1) defined by (7).

Note that the Fourier coefficients of the Jacobians used

to compute (30) through (29) are the same ones

needed to find the gradient of the harmonic-balance error

through (12). Thus after performing a harmonic-balance

analysis, such coefficients will automatically be available,

and the derivation of the conversion matrix will become

trivial. This is the reason why most mixer investigators use

the harmonic-balance technique to determine the local-

oscillator regime. For some simple devices these Fourier

coefficients also have an immediate physical meaning: for

instance, in the case of a nonlinear current source, they

coincide with the Fourier coefficients of the differential

conductance [73]. When (2) may be interpreted as the

equations of a nonlinear equivalent circuit, it is also possi-

ble to combine the conversion matrices of elementzu-y

components by circuit-like algebra to find the conversion

properties of the entire nonlinear subnetwork [77].

At this stage, mixer analysis has been reduced to a

matter of linear circuit algebra. The situation is depicted in

Fig. 2. The nonlinear subnetwork is replaced by a linear

circuit described in the frequency domain by the conver-

sion equations; each smaller block represents the linear

subnetwork at one of the sidebands. Performing the re-

quired circuit connections leads to a matrix description of

the mixer as the resulting two-port.

L I NEAR I zED NONL I tiEAR SUBNETWORK
DESCR BED BY ITS CONVERS10N EQUATIONS

[.. : (2 N.+1) pORTS]

.. pORTS n. PORTS . . PORTS

LINEAR L I NEAR L I NEAR
SUBNETWORK SW3NETWORK SUBNEIViORK

AT m, AT o,+ kiq AT q

\ I I Iu kTH S DEBAND
RF NPUT I F OUTPUT

PORT PORT
—

u
RF SOURCE I F LOAD

Fig. 2. Linearized equivalentcircuit of a microwavemixer.

It is worth mentioning that this linearized behavior must

be dealt with some caution. In fact, the two-port mixer

matrix just mentioned is not usable for design purposes,

except, of course, for a hand-driven optimization whereby

a circuit parameter is manually changed and the whole

analysis procedure is repeated each time. This is easily

explained: assume, for instance, that an input matching

network is designed on the basis of the linearized matrix

description. If this network were connected with the RF

port, the whole local oscillator regime would change, and

so would the mixer matrix; the designed matching section

would thus become meaningless. If we recall the analogy

with the small-signal operation of a de-biased nonlinear

device, the same situation would occur if the addition of

RF circuitry did result in a change of the bias point. The

difference is that the bias circuit can be isolated from the

RF by suitable de-blocking devices, while obviously the

local-oscillator regime cannot.

It follows that computer optimization of microwave

mixers still remains an open problem: the only viable

approach reported in the literature was a direct harmonic-

balance optimization implemented on a supercomputer

[59], [81].

It should be mentioned here that in the recent technical

literature the mixer problem has been treated by several

authors [58]–[60], [64], [82] as a conventional nonlinear

analysis problem with multiple-frequency excitation (see

Section IV). This approach is computationally heavier, but

allows nonlinearizable aspects such as conversion-gain

compression [59] and intermodulation distortion [82] to be

accounted for. With some limitations, intermodulation dis-

tortion in diode mixers has also been analyzed by a

stepwise procedure based on the conversion-matrix tech-

nique [83].

The frequency-conversion analysis outlined above is not

only a numerical tool for the simulation and design of

microwave mixers. It is also the kernel of a generalized

perturbation analysis of periodic steady-state regimes sup-

ported by nonlinear microwave circuits. This analysis is

compatible with a frequency-domain description of the

linear subnetwork, and can thus take advantage of state-

of-the-art techniques for passive circuit modeling [84], [85].

As will be shown in the following sections, such advanced

and complicated problems as generalized stability and
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noise analysis can be treated by the same perturbative

approach with suitably chosen boundary conditions. Thus

frequency-conversion analysis represents a key step toward

the development of a general-purpose nonlinear micro-

wave CAD system that is not confined to the traditional

aspects of circuit simulation and optimization.

VI. STABILITY

If in Fig. 2 we suppress the RF source, the same circuit

diagram becomes useful for investigating the stability of

the local-oscillator regime. From a more general stand-

point, the figure represents the linearized equivalent circuit

of the original nonlinear network in the neighborhood of

any time-periodic steady-state solution of the network

equations. It may thus be used to establish a general-pur-

pose approach to the stability analysis of any such solution

which will be developed in the first part of this section.

This analysis is restricted to local or conditional stability

[86], in the sense that the results are only valid in the space

of smalz perturbations of the steady state. Even if the

latter is stable in this respect, a large perturbation may

force the circuit to abandon it permanently and to jump to

a different stable state. This wider viewpoint requires a

global stability analysis, to be discussed in the second part

of this section.

The stability analysis described here does not require

any limiting or simplifying assumptions on circuit behavior

and is thus considerably more advanced than most previ-

ously available solutions of the same problem [87] -[94],

many of which it includes as particular cases. Its accuracy

is only limited by the high-frequency behavior of the linear

and nonlinear subnetwork models [94]. However, since this

treatment is based on the same principles leading to mixer

analysis via the conversion-matrix concept, its practical

validity is indirectly but reliably checked by the large

amount of successful mixer work available in the literature

[73]-[79].

A. Local Stability

We first derive a characteristic equation for the natural

frequencies of the linearized equivalent circuit shown in

Fig. 2. Let a small perturbation of complex frequency

o + @ be superimposed to the steady-state solution ~(t).

The resulting electrical regime can be represented to first

order by

[
x(t) =X(t) +exp(ot) Re ~AX~exp{j(a+koO)t}

k 1
(31)

which is identical to (25) except for the amplitude factor.

Similar expressions hold for the voltages and currents.

u + @ is a natural frequency of the steady state if the

spectral components of the perturbation satisfy the lin-

earized network equations. For the nonlinear subnetwork

this means that (26) must hold with u~ replaced by u – ju.

For the linear subnetwork, which is now source-free, we

use the frequency-domain equations (3) with D(o) = O.
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We can gather all sidebands u + k~O into the compact

matrix notation

A~AV+B~Al=O

where

A~=diag [A(ti-ju+kaO)]

B.=diag [B(ti-jo+k@O)].

Combining (26) with (33) yields the desired

equation:

(A. P+ B.Q)A,X=O

(32)

(33)

eigemvalue

(34)

so that the characteristic equation for the natural frequen-

cies is

det(A~P+B~Q) =A(cr+ju) =0. (35)

The above procedure can be considered the generalization

of a result first discovered by Mees [95], [96]. The formula-

tion adopted is convenient from the mathematical view-

point, since the determinant (35) has no singularities ex-

cept at infinity, so that pole–zero cancellations cannot

occur. For the sake of physical intuition, however, it is

better to rewrite (35) in terms of admittance or impedance

matrices. Making use of (27) and (28) we get

det(Zc+ZL)l =0

det(YC + Y~~l = O (36)

where

Z~=diag[Z(ti – .io + k~o)]

Y~ = diag [Y(Q – ju + kuo)] (37)

and Z(u), Y(u) are the conventional impedance and ad-

mittance matrix of the linear subnetwork. The eigenvalue

equation is thus seen to be formally identical, and concep-

tually similar, to the one used to find the natural frequen-

cies of a linear network. With respect to the latter case, the

conventional device impedance or admittance matrix is

replaced by the conversion matrix, while the single-

frequency impedance or adinittance of the linear subnet-

work is replaced by the diagonal sum of all sideband

impedances or admittances.

From the computational viewpoint it is virtually impos-

sible to actually find all of the natural frequencies. Thus

some indirect way of establishing the nature of the solu-

tions has to be found. One possible approach is to produce

a Nyquist stability plot [94]. In t!he present case, this turns

out to be a much easier job than one might suspect,

because of some known properties of the determinant.

First of all, A(o + j~) is a periodic function of a, so that

[94]

A[u+j(ti+haO)] = (--l) ”””~A(u+j~) (38)

where h is an integer. To remove the singularity of A at

infinity (o ~ co, 0> O), we can thus replace A by the

complex function, having the same finite zeros,

1 Wo J
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Fig. 3. Bifurcation diagram of the active frequency divider shown in Fig.1.

which is periodic in u with period tie. From Nyquist’s

equation [97], the number of natural frequencies lying in

theregion [O<ti<tiO, u> O]isthen given by the number

of clockwise encirclements of the origin made by &(j@ ) as

o is swept from O to GJO.It is assumed that the steady state

considered is not a bifurcation point (see Section VI-B), so

that FA(j@ ) # O. Finally note that [94]

&(u-j6)) =~A*(u+jti) (40)

so that only the range 10, 0./2] need be investigated.

Of course in practice the user does not have to actually

draw the Nyquist plot and count the encirclements: all this

can be effectively done by the computer, and user interac-

tion is reduced to a printed line on output reporting the

total number of unstable natural frequencies. Furthermore,

since the calculation is highly repetitive and easily vectoriz-

able, it can be performed most efficiently on a supercom-

puter, typically in a fraction of a second in most practical

cases. Thus it is actually possible to complement a

general-purpose analysis and optimization program by an

algorithm for local stability analysis in a way completely

transparent to the user.

B. Global Stability

We first derive a global stability picture for a simple

specific circuit by performing a large number of local

stability analyses. Then we develop a systematic approach

to global stability based on bifurcation theory, and show

that in the particular case under examination the two sets

of results strictly agree.

Let us consider once again the regenerative frequency

divider introduced in Section III. Fig. 3 shows a bifurca-

tion diagram for this circuit, which is drawn in terms of

the quantity

()
1/2

M= ; I[xkl[z (41)
k=l

versus available input power. The state variables are cho-

sen as the FET gate and drain voltages (Fig. 1).

To find this plot, the divider was first optimized for a

O-dB gain at an input power of 6 mW at 9.4 GHz, which

yielded point A. This point is obviously associated with

another steady state, which we name ~, having exactly the

same harmonics except for a sign reversal of the odd ones.

Finally, a third operating point, named’ B, was found at

the same power level by a harmonic-balance analysis of

the circuit with a zero starting point. The curves were then

generated by a continuation method (e.g., [33], [35]), and

the stability of a large number of points was checked by

the Nyquist approach. The results of this analysis are

reported in Fig. 3. Note that between points 11 and 12

three solution branches exist. Two of them are superim-

posed in the figure, and correspond to the usual bistable

divider operation with a 180° phase shift between the two

otherwise identical stable states. The third one is indicated

as “multiplier branch” in the figure because of the total

absence’of any odd harmonics in the steady state. This can

be expected to be unstable on a physical ground, since the

pumped nonlinear device must produce a negative resis-

tance, and thus unstable eigenvalues, for the onset of

frequency division to take place.

This kind of analysis may be produced in a much more

systematic way making use of the principles of bifurcation

theory [86]. For a parameterized nonlinear system, bifurca-

tions are defined as the states corresponding to those

parameter values for which system stability undergoes an
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abrupt qualitative change; that is, the real part of one (at

least) natural frequency changes sign. For a circuit depend-

ing on a free parameter p, the existence of a bifurcation at

p = p~ requires that (5) and (35) be simultaneously satis-

fied with u = O, so that the mathematical conditions defin-

ing a bifurcation are

E(x, pB) =0

A(ja, X,pB)=O (42)

~(pB)#o. (43)

The topological as well as the stability-exchange proper-

ties of bifurcations in nonlinear systems have been studied

very extensively under very broad assumptions which cer-

tainly warrant the application of the results to microwave

circuits [86]. A simplified classification of the fundamental

types of bifurcations (which are essentially the interesting

ones for microwave applications) is given below [98].

The bifurcations of periodic solutions of period TO are

considered first. We denote a periodic steady state by ~S ~,

where k is the number of unstable natural frequencies and

m indicates a period mTO (1 understood). Then the follow-

ing fundamental types of bifurcations are possible [99]:

1) D-Type (Double-Point Bifurcation): A simple real nat-

ural frequency crosses the origin at p = p~, so that equa-

tions (42) are satisfied with a = O. The exchange of stabil-

ity is defined by

~s+kkls%k+ls+ks (44)

where the states appearing first (second) on both sides of

the arrows correspond to each other.

Special Case of D-Type (Regular Turning Point): This

is the same as 1), but the creation or annihilation of two

periodic states takes place at p = PB. The exchange of

stability -is defined by

+%,k+ls+ks (45)

where @ denotes the absence of solutions.

2) I-Type (Period-Doubling Bifurcation): Two simple

complex-conjugate natural frequencies of the form u i

@O/2 cross the imaginary axis at p = PD, so that (42) are

satisfied with u = +- tiO/2. The exchange of stability is

defined by

kS%k~~S+2 kS2. (46)

Note that u + @O\2 is in fact the same solution of the

characteristic equation (35) because of the periodicity of A.

This explains the subscript k&1 in the first term on the

right-hand side of (46).

3) Hopf-Type (Spurious-Exciting Bifurcation): Two sim-

ple complex-conjugate natural frequencies cross the imag-

inary axis at p = PB, so that (42) are satisfied with O < Iu I
< uO/2. The exchange of stability is defined by

,@$S ~* ~S + ~(CLOSED CURVE) (47)

where the closed curve represents a quasi-periodic regime

which is stable for k = O and unstable otherwise.

Because of (40), A(0) and A(jfi~O\2) are real quantities.

This means that (42) is a system of N + 1 real equations in

N + 1 real unknowns X, p~ for D- and l-type bifurcations,

and is a system of N + 2 real equations in N + 2 real

unknowns X, p~, u in the case (of Hopf bifurcations (N

given by (7)). Thus the system is always well conditioned

from a mathematical viewpoint. This also explains why

1)–3) represent the fundamental bifurcations: the existence

of such bifurcations is mathematically possible in generic

situations. On the other hand, more complex kinds of

bifurcations requiring additional constraints to be imposed

on the same variables appearing in (42) (e.g., o = ~0 /4 for

a period-quadrupling bifurcation) will only exis t under

exceptional circumstances.

The condition (43) (often referred to as the condition for

strict loss of stability) must be checked at any solution of

(42) to ensure that the solution itself actually represents a

bifurcation. It is virtually impossible to do this directly,

because the computation of du/dp requires a knowledge

of the third-order partial derivatives of the circuit equa-

tions [86], [100]. Fortunately, the Nyquist analysis de-

scribed in Section VI-A allows (43) to be checked by

elementary methods. In fact, all we need do is to show that

the Nyquist plot actually crosses the origin at p = p~, i.e.,

lies on opposite sides of the origin at p = PD k 8P (~p << pB)

in the neighborhood of ~ Q. In particular, this implies that

the real quantities AIO, X(p), p] and A[jtiO/2, X(p), p]

change sign at p = p~ in the cases of D- and I-type

bifurcations, respectively.

The preceding argument also indicates the most con-

venient way of solving the system (42): its first equation is

first solved for X(p) by a continuation method; then

A(0) = O and A(jtiO/2) = O are solved in the one-dimen-

sional manifold X(p), and A(J;U ) = O is solked in the

two-dimensional manifold [U, X(p)]. The procedure is then

repeated for the bifurcating branches. Since the stability of

the circuit does not change, by definition, along a branch

not containing bifurcations, a global stability picture for

the circuit being considered is readily obtained in this way.

Note that this implies that the stability of an infinite

number of possible states becomes known by a finite

number of operations.

We now go back to the regenerative frequency divider

shown in Fig. 1 and apply the above considerations to this

circuit. In the present case, the parameter is chosen as the

available power of the pump, i.e., p = PIN(m W). We are

interested in the range O < p <22,.

The” multiplier branch” (Fig. 3) is first determined by a

continuation method starting from p = O. A local stability

analysis of the bias point chosen (Vg,O = – 1.9 V, V&O= 6

V) reveals that the circuit is dc stable; thus the multiplier

branch is stable in the neighborhood of the origin. Two

solutions of the system (42) are found on the multiplier

branch within the range of interest: two l-type bifurca-

tions (points 11, 12) at p = PIs 1.7 and p = p=s 18.8, re-

spectively. The two-parameter bifurcation analysis re-

ported below (see Fig. 4) shows that 11,12 belong to the

same ei~envalue u + iu. /2. Thum the multirdi er branch is
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Fig. 4. Bifurcation analysis of the active frequency divider in a two- dimensional parameterspace.

stable for p < PI and p > Pz and unstable elsewhere. Start-

ingat p= pl, the ’’divider branch” is then determined bya

continuation method. This branch starts at II and

terminates at 12. The bifurcation at II is supercritical, i.e.,

is described by (46) with the arrow pointing right and

k = O. Thus the divider branch is stable in the vicinity of

the bifurcation. Two solutions of the system (42) are found

on the divider branch within the range of interest: two

D-type bifurcations corresponding to the regular turning

points D2, D1 (Fig. 3). Because of (45), the divider branch

becomes unstable beyond D2. Once again, the two-dimen-

sional bifurcation analysis reported below (Fig. 4) shows

that Dl, Dz belong to the same real eigenvalue. Thus the

divider branch is stable beyond Dl, and a narrow hyster-

esis cycle appears around the threshold. Also; the nominal

operating point A is found to be stable. Finally, frequency

division ceases at point 12, representing an I-type bifurca-

tion of the subcritical kind (i.e., described by (46) with the

arrow pointing left and k = O). Note that each point of the

divider branch is actually representative of two states,

differing only in the sign of the odd harmonics, and thus

associated with the same value of M.
A deeper insight into the global stability picture for the

frequency divider is provided by a bifurcation analysis in a

two-dimensional paramete~ space. The second parameter is

chosen as the inductance L of the feedback branch, since

feedback is expected to have a critical influence on circuit

performance. The results are reported in Fig. 4.

On the L axis (PIN= O) a Hopf bifurcation of the bias

point is encountered at L = L~ ~ 18.2 nH (Fig. 4). For

L < L~ the circuit behaves as a free-running oscillator

with a fundamental around 4.7 GHz, and is thus useless as

a frequency divider. In the region above L~ the circuit is

de-stable, and its qualitative behavior is always of the kind

depicted in Fig. 3. The loci of the four relevant bifurca-

tions 11, lZ, Dl, Dz are shown in the figure. The continuity

of the two curves shows that 11, Iz are generated by the

sign reversal of the real part of the same natural frequency,

and so are Dl, Dz. Further note that the turning-point

curve exhibits the classic pattern of the so-called “cusp

catastrophe” [4], the cusp occurring at point C.

The overall behavior of the frequency divider is clearly

apparent at a glance from Fig. 4. Frequency division will

take place when the selected combination of inductance

and drive power falls within the “divider zone.” For any

inductance value, the left-hand border of this region repre-

sents the divider threshold. A hysteresis cycle may exist

around threshold, depending on the selected inductance

value. Above the cusp point (L> 21 nH, approximately)

hysteresis is eliminated, but threshold becomes relatively

high (around 4 dBm). On the other hand, decreasing the

inductance will lower the threshold, but at the same time a

hysteresis cycle of growing width will appear. Further-

more, the circuit will become noisier, since the conditions

for oscillation are approached.
As a final point, we shall briefly discuss the bifurcations

of static solutions of the circuit equations ( X~ = O for

k # O). In this case the fundamental bifurcations are the

D- and the Hop f-type. For microwave applications, the

latter plays an essential role in oscillator design and para-

sitic bias-circuit oscillations control in general microwave

subsystems. The former may be of interest in relation to

the design of de-stable bias networks.

The conditions defining a bifurcation of a static solution

are obviously much simpler than (42). If XO is the dc (and

the only nonzero) component of the state vector at the
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bifurcation, we must have

det[l.D– S(a, pB)SD(u, &,pB)] =0 (48)

$&w (49)

where S is the conventional scattering matrix of the linear

subnetwork (which may depend on the parameter p), and

SD is the small-signal scattering matrix of the nonlinear

subnetwork describing its linearized behavior around the

bias point defined by Xo.

The exchange of stability at the bifurcation is discussed

in detail in [98]. As a general rule, in the case of a simple

real eigenvalue (D-type) or of two simple complex-con-

jugate eigenvalues (Hopf-type) crossing the imaginary axis

at p = p~, supercritical bifurcated states are stable, while

subcritical ones are unstable [86].

For a D-type bifurcation (u= O), (48) is a system of

n ~ + 1 real equations in n ~ + 1 real unknowns Xo, p& In

the Hopf case, it is a system of n ~ + 2 real equations in

n ~ + 2 real unknowns Xo, pB, u. Thus the system is gener-

ally solvable from the mathematical viewpoint. The solu-

tion is now simplified by the fact that the second of eqs.

(48) simply states that one of the eigenvalues (in a conven-

tional sense) of the matrix SS~ must be equal to 1 at the

bifurcation. Thus a convenient way of solving (48) is now

as follows: i) the first of (48) is solved for Xo( p) by a

continuation method; ii) to find D-type bifurcations, the

one-dimensional manifold Xo( p ) is searched for the points

p~ at which one eigenvalue of SS~ becomes unity; iii) to

find Hopf-type bifurcations the two-dimensional manifold

[o, Xo(p)] is searched for those points (u, pB) at which
one eigenvalue of SS~ becomes unity. To verify (49) we

only have to check that the magnitude of the above-men-

tioned eigenvalue is <1 at pB – 8P and >1 at PB+ 8P(8P

‘< pB ), or conversely.

C. Stability Analysis in the Time Domain

In principle, a similar stability analysis can also be

carried out by time-domain techniques.

Let us assume, for instance, that the circuit is described

by the set of evolution equations (l). Static (de) solutions

may be obtained by setting dxl/dt = du/dt = O in (1) and

then solving the resulting system of nonlinear algebraic

equations. The original system is then linearized in the

neighborhood of any dc solution to find the corresponding

natural frequencies. The latter are given by the eigenvalues

of the Jacobian of the right-hand side of (1) with respect to

the state variables, evaluated in equilibrium conditions.

Periodic steady-state solutions :(t) must first be de-

termined by the techniques described in Section II-A. The

system (1) is then linearized in the neighborhood of i(t)

and the evolution of a small perturbation Ax(t) is studied

by Floquet analysis [86]. This means that by further

numerical integration one has to derive the nzonodromy

matrix defining the change of the perturbation across one

period Toof the steady-state:

Ax(t+To) =@(To) Ax(t). (50)

The eigenvalues X of @(To) then yield the natural frequen-

cies through the relationship

A=exp{(u+jti)To}. (51)

While the above procedure represents the conceptual

basis for all mathematical treatments of stability, it is very

difficult to implement numerically when the size of the

system (1) is large (as is the case for practical microwave

circuits), mainly because of the lerlgthy numerical integra-

tions involved.

For this reason a true stability analysis is often replaced

by a transient analysis [101], that is, a full numerical

integration of the evolution equations from circuit turn-on

up to the achievement of a steady state. It is implied that

all natural frequencies will be excited during the transient,

so that the effects of unstable ones will show up in the

final waveforms. While this may be sufficient for many

practical purposes, a global stability picture of the kind

described in the preceding sections cannot be obtained in

this way.

VII. NOISE

In Section V we derived a generalized solution of the

frequency-conversion (mixer) problem by injecting a small

RF deterministic signal into a nonlinear network support-

ing a periodic steady-state regime, and by analyzing the

resulting perturbation. When the RF source is replaced by

a set of random noise generators as the perturbing mecha-

nism, it is quite reasonable to expect that the same argu-

ments will lead to a noise analysis of the steady state. Of

course in this case the problem is much more complicated,

since the free sources can only be described in a statistical

sense. If several noise generators exist, they may not be

statistically independent, and their correlation must be

accounted for in evaluating the noise power delivered to a

prescribed load. Further correlations are established among

the noise sidebands because of the intermoclulation of

noise waveforms with the periodic steady state. All such

effects are included in the general noise analysis to be

presented in this section.

Because of its practical importance, a good deal of

attention is paid to the noise problem in the technical

literature. Several authors treat the subject for specific

subsystems and with the aid of drastic simplifying assump-

tions, often aimed at the development of closed-form

expressions highlighting some of its basic aspects [90], [92],

[102] -[109]. Both frequency-domain [110], [111] and time-

domain techniques [112] have been proposed to model the

near-carrier noise in FET oscillators. Probably the most

advanced treatment is given by ILerr in his noise analysis

of diode mixers [74], [75], which makes use of a classic

result established by Dragone [11[3] to correct] y represent
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the noise-sidebands correlation in the pumped diodes. The

approach described here can be considered as an extension

of Kerr’s work to include generalized circuit topologies

and multiport noisy nonlinear devices. As usual, the results

are suitable for computer implementation in a general-pur-

pose CAD environment.

Let us consider a stable steady-state solution i(t) of the

circuit equations, time-periodic of period TO= 2 Z/@o, and

let a random perturbation fix(t) be superimposed on it.

We assume that the perturbation is

and write

fix(t) =Jw FX(a)exp(jtOt)do
—cc

Fourier-transformable

where FX( o ) is a vector of Fourier transforms (divided by

2 n ). All vectors appearing in (52) have the same size n ~,

equal to the number of ports of the nonlinear (or linear)

subnetwork.

In the following, our interest will mainly be focused on

spot noise calculations, so that we shall consider noise

perturbations of the form

&c(t) =~i3X~(ti)exp {j(c0+kao)t} (o<(’<@o)
k

(53)

where, according to (52)

axk(u)= l?x(u+kuo)do. (54)

i3Xk(co) may be interpreted as a vector of complex am-

plitudes of “ pseudosinusoidal” noise components at fre-

quency u + kao (i.e., at the k th sideband associated with

~). With the formulation adopted, the squared magnitude

of the i th element of flXk( w ) (1 < i < n ~) represents the

RMS value of those components of the noise waveform

&c, (t) whose spectrum lies in a narrow band da in the

neighborhood of u + kuo. Thus if a spectral density GXZ( a )

can be associated with 8X1(t), we have

18X,,(ti) 12= GX,(u+k@o)d~. (55)

To develop our noise analysis, we are going to replace

the nonlinear network under consideration by the equiv-

alent circuit shown in Fig. 5. This transformation requires

some comments.

As usual, the original circuit is first subdivided into a

linear and a nonlinem subnetwork. The vector of noise

voltages at the connecting ports is denoted by ih(t).The

linear subnetwork is replaced by its Norton equivalent,

consisting of a noise-free network with a noise current

source connected across each port. These will be referred

to as the “linear” noise sources and their set will be

indicated by jL(t) (see Fig. 5). The linear noise sources are

correlated, so that their statistical properties are described

in terms of an (n ~ X nD) spot correlation matrix @L(a). If

we adopt the representation (53), that is,

~L(t)=~JL~(~) exp{j(~+k~o)t} (56)

NO I SE–FREE L I NEAR SUBNE~ORK

port 1 port n.

, , 61,, (t) i <,di,no(t) ;
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+ +
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Fig. 5. Equivalent representation of a noisy nonlinear network.

then the correlation properties of the sidebands are ex-

pressed by

(JLp(~)J&(~)) =~;@L(@+P@o) (57)

where ii is Kronecker’s symbol, ( ) indicates the statistical

mean, and * the Herrnitian conjugate. An important point

is that a general computer algorithm, allowing %?L(a ) to be

derived for a completely arbitrary configuration of the

linear subnetwork, is available in the technical literature

[114].

In Fig. 5 the noisy nonlinear subnetwork is dealt within

a similar way, i.e., is replaced by a noise-free nonlinear

multiport with a noise current source connected across

each port. Such sources account for the noise generated

inside the nonlinear subnetwork and their properties are

affected by the steady-state regime supported by the cir-

cuit, as described below. They will be referred to as the

“nonlinear” noise sources, and their set will be denoted by

j(f) (see Fig. 5).

Note that the representation adopted for the nonlinear

subnetwork does not have the ‘meaning of a Norton

equivalent circuit. In fact, the Norton transformation is

based on the superposition principle, and its applicability

is strictly confined to linear circuits. To produce the topol-

ogy shown in Fig. 5, we simply open an additional external

port of the nonlinear subnetwork at the terminals of each

noise source which is not naturally connected across a

port. For each fictitious port thus created, we must also

add an open-circuited port to the linear subnetwork and a

new state Valriable in the equations (2). Thus a noise

analysis, although possible in general, may force us to



RIZZOLI AND NERI: NONLINEAR MICROWAVE CAD TECHNIQUES 359

work with anumberof ports n~ Iargerthan required bya

conventional nonlinear analysis not including noise.

We next derive the correlation properties of the nonlin-

ear noise sources. Let us first focus our attention on the

bias point of the nonlinear subnetwork, which is defined

by the subset XO of the state vector X. If the nonlinear

subnetwork were operated under dc conditions at the bias

point XO, its noise behavior would be described by a set of

noise sources, namely &( XO, t),depending on XO in a

deterministic way. The statistical properties of &C can be

derived in the usual way from the physical properties of

the nonlinear subnetwork; for the most common microw-

ave devices they are thoroughly described in the technical

literature [115]. In particular, we will regard as known the

spot correlation matti of j&, namely &&(&,@).

The dynamic case can now be studie$l by a quasi-static

assumption. Following [113], we think of noise as arising

from the superposition of statistically independent random

disturbances whose duration is much smaller than TO. The

statistical properties are determined by the probability

distribution of such elementary events, whose magnitude is

proportional to a deterministic function of Xo. The peri-

odic steady state may thus be treated as a time-dependent

bias point: in this case the magnitude of the probability

distribution is expressed by the same function with X.

replaced by %(t), and becomes a periodic function of time.

We thus write

j(t) =h(~)jd.(xo,t) (58)

where h(t) is diagonal of size n ~, is time-periodic of

period To, and has nonnegative elements. To evaluate h(t),
we consider the ith element of jdC (1< i < n ~), and denote

by Gdci(Xo,co) its spectral density. The corresponding
(normalized) available noise power is given by

JNdci= Gdc,(Xo, u) da (59)
B

where B is the noise bandwidth of interest. In the dynamic

case, this power will be modulated by a periodic function

of time, which can be identified as h f(t) according to (58).

Using the quasi-static assumption we thus obtain from

(59)

Ni(t)=h:(t)Ndci

‘~ Gd.i{~(t)u}d@ (60)
B

and finally

[ 1JGclci{f(t)@}d@ “2

hi(t)= B. l<i<n~. (61)

Thus h(t) can be immediately derived once the steady

state i(t) and the noise properties of the de-biased nonlin-

ear subnetwork are known.

Since h(t) is real and time-periodic, we may write

h(t)= ~Hpexp(jptiot) (62)
P

where Hp is diagonal of size n ~, and H.p = HP*.

Let us represent the static and dynamic noise current

waveforms by expansions similar to (56) and denote by

&~(&, @) and ~~(o ) their pseudosinusoidal component

amplitudes, respectively. Introducing such expansions and

(62) into (58) yields

+@) = x~p-kJdck(xO#)- (63)
k

Since the correlation properties of J~Cmaybe expressed as

in (57) (with f~ replaced by &~C), from (63) we obtain

directly

($(@) J:(@)) = ~Hp-@&%@ + ~@o)Hk_q. (64)

k

Equation (64) shows that different sidebands of the non-

linear noise sources are in general correlated because of the

modulation of the dc noise waveforms operated by the

periodic steady state. It is easy to check that the result

derived by Dragone [113] and used by Kerr ~14], [75] can

be reobtained from (64) in the case of a set of uncorrelated

sources of white noise (&dC diag)onal and independent of

0).

At this stage the noise analysis can be developed in a

straightforward way. To make the equatioris formally sim-

ple, we first introduce for each noise waveform of interest

the vector of the pseudosinusoidal component amplitudes

at all sidebands: for instance, for the random perturbation

b(t) we define

8X(U) = [8XJLLI)] (65)

and so forth. Such vectors satisfy a set of equations that

are formally identical to (26) and (32), that is,

tlv((d) = Pflx(6))
81(cJ) =Q (3X((J) (66)

AL8V(LJ)+BL 8JL(U)=0

where the currents at the linear subnetwork ports have

been denoted by the subscript L (see Fig. 5). From the

figure we also obtain

81L(LJ) =fll(u)+ J~(u)+ J(ti). (67)

Combining (66) and (67) yields

8V(U) = -P(A~P+B~Q)-lB~ {J~(u)+ J(u)}. (68)

We can select the kth sideband by writing

Wk(td) =Uk 8V(U) (69)

where

[
Uk= . ..0...1 .()..

*D”” “1 (70)

and lnD is an identity matrix of size n~. Because of (35),

the matrix (A ~P + B~Q) is nonsingular, and thus (68) is

meaningful at any u between O and tie, if the steady state
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Fig. 6. Identification of a load within the linear subnetwork.

is asymptotically stable, i.e., all its natural frequencies have

a negative real part.

To complete the noise analysis, we arbitrarily select a

resistor within the linear subnetwork, which is assigned the

meaning of load, and compute the spectral distribution of

the noise power actually delivered to this load. For this

purpose we rearrange the linear subnetwork in the way

shown in Fig. 6, and carry out a conventional linear

analysis of the (n ~ + I)-port network thus obtained at

o + k tie. From the admittance matrix of the (n ~ + I)-port,

we can readily derive a (1 x n ~ ) transadmittance matrix

YR(CJ) such that

c31:(a) =YR(u+kuO)SV~(u) (71)

where M;(u) is the complex amplitude of the pseudo-

sinusoidal noise current component through R at u + ktio.

Making use of (69) and (68), we get

81f(u)= Tk{JL(ti)+ J(a)} (72)

where

T~ = – Y~(to + kuO)U~P(xl.P+ B.Q)-lB.. (73)

Since the linear and nonlinear noise sources are not corre-

lated, their effects may be superimposed in power. Thus

the noise power delivered to R within a narrow frequency

band da in the neighborhood of u + ktio is

dN, (a)= R(lM;(u) 12)

=RT~(J~(u)J~(@))T~*

+RT~<.J(a) J*(a) )T~*. (74)

If we now partition T~ into (1X n ~) submatrices, namely

T~= [T~P] (75)

and recall (57) and (64), we get the final result

dNk(u)

=R~TkP@L(U+POO)T&
P

{ }
+R z Tkp Z~P-,&DC(XO,~+~@O)~S-q Tk~.

P.~ s

(76)

By means of (76), noise in a nonlinear network is essen-

tially described as a frequency conversion effect, with each

TkP playing the role of a sideband-to-sideband conversion

matrix. In particular, the quantity

dNj(ti) = RT~O@L(ti)Tk~

+ R ~ TkPHP&dC( & >@)HQ* T& (77)
P)q

represents the contribution due to the up-conversion of

baseband noise to the k th sideband. If the usual trunca-

tion is adopted, all summation indexes in (76) and (77)

range from – NH to NH.

Besides the noise power described by (76), having a

continuous spectral distribution, a finite power is obvi-

ously delivered to the load at each harmonic of the steady

state. This can be expressed as

S(k.oo) = ;Rl Y,(k@o)@k(X)12 (78)

where X is the state vector, and @k is the k th harmonic of

the first of (2) computed in steady-state conditions. Equa-

tion (78) represents a set of discrete spectral lines that are

superimposed to the continuous spectrum (76).

VIII. IMPACT OF SUPERCOMPUTERS

It has now become evident from the preceding discus-

sion that nonlinear analysis and design problems concern-

ing realistic microwave circuits may be large-size ones

from the numerical standpoint. Many kinds of passive

components require the use of sophisticated modeling

techniques, while the nonlinear equivalent circuits of even

the simplest microwave devices often contains several non-

linear elements such as resistors or dependent sources.

Basic operations such as analysis and optimization require

expensive search algorithms involving repeated multi-

frequency analyses of the linear subnetwork. The number

of unknowns maybe quite large, especially for broad-band

operation, not to mention the case of multitone excitation

such as in mixer or intermodulation problems. Stability

and noise analyses require large-order matrices to be re-

peatedly evaluated and inverted. In order to implement all

this, from the viewpoint of both software development and

systematic use, it is rather natural to resort to the highest

available computational power, namely, supercoinputers.

For the time being, let us make use of a simple perfor-

mance-oriented definition of a supercomputer, i.e., some-

thing that is roughly two orders of magnitude faster than a

VAX and has several millions 64-bits words of central

semiconductor memory. There are many reasons why such

a machine can be attractive for nonlinear microwave CAD

purposes, and some of them are conceptually more rele-

vant than mere computational speedup. Of course, the

latter is important by itself: some advanced nonlinear

applications may require such a long CPU time as to make

the use of a medium-size mainframe definitely impractical.

There is, however, much more than that. The computer-

aided solution of any problem of applied science always
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requires some amount of analytical preprocessing. There is

always a tradeoff between mathematical and numerical

work, and the use of sophisticated analytic and progrtim-

ming techniques is often convenient in order to alleviate

the computational burden committed to the machine. On

supercomputers, the opposite is often true: in fact, not

only are they fast, but the simpler program architecture,

the faster they perform, as we shall discuss later. Thus it

may be convenient to waive a consistent part of the

programmer’s task and to rely upon the number-crunching

capabilities of the computer. Simple, straightforward solu-

tion approaches which would be out of the question on

medium-size scalar machines may now become the most

natural way to solve the problem. An example concerning

nonlinear microwave circuits under multiple-frequency ex-

citation is reported in [59].

The availability of virtually unlimited memory resources

is another important point. Once again, the classic tradeoff

between memory occupation and computational speed may

be pushed all the way in favour of numerical efficiency. To

do the same on smaller-size machines one must often

resort to virtual memory, which can slow down computa-

tion in a significant way.

A. Vector Processors

The increased computational power of supercomputers

relies upon two fundamental mechanisms: technological

advance and architectural evolution. The former is trans-

parent to the user, and will not be considered here, but the

latter is not, in the sense that codes should usually be

matched to computer architecture in order to achieve

maximum efficiency. In turn, architectural evolution with

respect to the classic Von Neumann structure is essentially

based on one of the fundamental concepts of modern

computer science, namely, parallel processing.

As a matter of fact, most present-day supercomputers

belong to the special class of vector processors [116], [117].

Vector processors are really available commercially and

are relatively widespread; they feature the highest avail-

able computational power and are easily accessible to any

user for general-purpose scientific calculations. In such

machines, parallel processing is implemented by a number

of basic mechanisms, the most important of which are

listed below:

● pipelining of vector operations;

● chaining of vector operations;

● parallel execution of independent operations (arith-

metic, logical, address calculations,””” ) on indepen-

dent functional units;

● parallel execution of vector and scalar operations;

● multitasking.

Pipelining is the fundamental aspect, and is schemati-

cally illustrated in Fig. 7 [118], [119]. Let us consider a

binaiy operation of the form

C(1) =A(l) OPB(l) (79)

where OP is any arithmetic or logical operator and 1 is an

VECTOR REGISTER VECTOR REGISTER

A( I+N+2)

A(I+N+I) D

SEGMENTED 1ST SEGMENT
FUNCTIONAL

UNIT

~

PERFORM I NG
THE C( 1+2) ,.l (N-I)TH SEGMENT

OPERAT 10N
OP C(I+I)N NTH SEGMENT

VECTOR REGISTER I

EPc(1)

Fig. 7. Schematic illustration of the pipeline concept. C(J) ~ denotes
the kth step of the computation of ,4(J) OP B(J) in (he segmented
functional unit.

integer index. This operation is actually executed through

a number of elementary steps, each requiring one clock

period, such as sign control, exponent fitting, addition of

mantissas, and normalization, for a floating-point ad-

dition. The functional unit is thus subdivided into a corre-

sponding number of cascaded subunits or segments, each

performing one of the elementary steps.

Now assume that the code is carrying out a sequence of

identical operations for increasing values of 1, namely a

vector operation, so that operandls are continuously fed to

the functional unit at a rate of a couple for each clock

period. Once the entire process has been initialized, that is,

after the vector startup time has elapsed, results will also

be produced at the same rate. Thus the vector processor

will execute binary vector operations at a peak speed,

measured in floating-point operations per second, or flops,

equal to the inverse of the clock period.

However, pipelining is not restricted to the binary case

illustrated in Fig. 7: in fact, more complex vector oper-

ations can be executed in parallel in the pipeline sense (one

result per clock period) by an additional mechanism, named

chaining [117]. The concept is very simple: as soon as a

result becomes available in a vector register (strictly speak-

ing, one cycle later), it can be fed to the input of a

different functional unit to serve as an operand for the

subsequent operation. In this wa!i the vector hardware may

be configured as an extended functional unit with several

inputs, where a multiple-operand arithmetic or logical

operation can be pipelined.

All this is obviously handledl by the compiler and is

transparent to the user, except for one aspect: the calcula-

tions to be performed by the prc}grarn should be organized

into the largest possible groups of consecutive operations

of the same kind, that is, into vector operations of the
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maximum possible length. This is what we mean by

vectorizing a program.

The other mechanisms mentioned above are in fact

something different, in that they implement a more con-

ventional concept of parallelism, namely, different func-

tional units simultaneously execute independent oper-

ations on different operands. Multitasking is similar except

that parallelism is exploited here at the highest level: if the

system is a multiprocessor, the user’s program can be

orgaiiized into sections to be run concurrently on different

CPU’S. Organizing the tasks and synchronizing them when

several ones merge again into a single instruction stream is

up to the user, and can be done at the FORTRAN

programming level by suitable calls to specialized system

subroutines.

Note that the above discussion is somewhat Cray-ori-

ented since this is the system family the authors are most

familiar with; however, the principles are substantially

valid for many different kinds of vector processors.

The same discussion makes it clear that program vector-

ization is the most important action to be taken in order to

effectively exploit the computational power of a vector

supercomputer. The same code on the same machine can

run in a CPU time ranging from, say, 1 to 10 in relative

terms depending on its degree of vectorization. This has a

direct impact on computer costs, too: in fact, the user will

pay exactly the same ~ount for one CPU second regard-

less of whether his calculations are vectorized or fully

scalar. This means that any speedup obtained by vectoriza-

tion will result in a cost reduction by exactly the same

amount. An important related point is that vectorizing

invariably means making a program simpler and better

structured, which is clearly shown by the fact that

vectorized programs are usually more efficient from the

scalar viewpoint, too [122], [123]. This happens because

vectorizing leads to the elimination of a number of non-

productive but time-consuming procedures SUCII as if

statements and subroutine calls. Of course this does not

imply that vectorization is good for scalar machines, since

it always results in a large increase of memory require-

ments. In fact, space has to be provided to store the entire

vector operands, which must be physically available, while

in the scalar approach subsequent elements may overwrite

the same memory locations, since results are produced

sequentially rather than in parallel.

B. Supercomputers in Microwave CAD

Going back to our main subject, it is quite obvious that

a nonlinear microwave CAD program is a natural candi-

date for an efficient vectorization. For instance, a circuit

optimization is usually carried out by some sort of iterative

method, and is thus a highly repetitive job, whjch will

spend most of the CPU time in executing exactly the same

set of operations over and over again. Thus in principle

vectorizing just becomes matter of organizing such oper-

ations in a convenient order.

Let us focus our attention on a relatively expensive

numerical procedure such as the optimization of a nonlin-

TABLE II
PERFORMANCE OF A TYPICAL VECTOR PROCESSOR (CRAY X-MP)

1) FFT (N. = NUMBER OF SAMPLING POINTS)

N,=32 N, = 1024

VECTOR SPEEDUP 7.3 14.7

COMB I NED SPEEL)UP
W I TH RESPECT TO THE 19 3 39 0

CDC 7600

2) SAMPLING OF NONL I NEAR RESPONSE

N~=32 N, = 1024

VECTOR SPEEOUP 6.5 11.9

COMB I NED SPEEDUP
W I TH RESPECT TO THE 18,9 34.7

CDC 76OO

3) MULTI FREQUENCY L 1NEAR SUBNETWORK ANALYSIS
(N, = NUMBER OF FREQUENC I ES)

N, =7 N, = 49

VECTOR SPEEDUP 2.9 5.9

cOMB I NED SPEEDUP
W I TH RESPECT TO THE 14 6 29.7

COC 7600

ear circuit by the harmonic-balance approach. Three mech-

anisms are essentially responsible for the computer time

requirement of this kind of job, namely, sampling the

time-domain response of the nonlinear subnetwork,

Fourier transforming it, and analyzing the linear subnet-

work at all the design frequencies and their harmonics.

The relative importance of these aspects is strongly job-

dependent; however, they are usually responsible for more

than 90 percent of the overall time, so this is where the

vectorization effort has to be spent.

Typical speedups measured on a Cray X-MP system are

reported in Table II. Of course the FFT represents the

easiest and most rewarding job since fully vectorized and

very efficient subroutines performing this algorithm are

available in all supercomputer libraries.

As for the nonlinear response, vectorization here is up to

the user, but is still easy and maybe carried out by direct

application of elementary principles. The scalar approach

would be to code the nonlinear subnetwork equations in a

subroutine yielding the response at a given time, and then

to repeatedly call it at all sampling instants. In a vector

logic one has to move the iteration inside the subroutine,

so that the calculation of the entire response becomes a

unique vector operation; in other words all sampling points

are processed in parallel in the pipeline sense.

The approach to the liiear subnetwork analysis is con-

ceptually similar: a sequence of single-frequency analyses

is changed into a single multifrequency analysis; that is,

any aspect of network performance is treated simulta-

neously at all frequencies of interest. In this case, to

enhance the degree of vectorization and thus to improve

the overall performance, some further actions can be taken,

such as the parallel computation of all physically similar

circuit components, and the parallel execution of topologi-

cally similar component connections. These ideas have

been discussed in detail in the recent technical literature

[123].
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The results shown in Table II include a comparison with

the performance of an equivalent scalar code on a classic

scalar mainframe such as the Cyber 76. Very similar results

are obtained with modern scalar systems such as the VAX

8800. The figures clearly show that supercomputers can

indeed be used to carry out large applications with fast job

turnaround and good cost-to-performance ratio and have

the potential to bridge the gap between linear and nonlin-

ear microwave CAD techniques.
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