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State of the Art and Present Trends

in Nonlinear Microwave
CAD Techniques

VITTORIO RI1ZZOLI, MEMBER, 1EEE, AND ANDRFEA NERI
(Invited Paper)

Abstract —The paper presents a survey of modern nonlinear CAD
techniques as applied to the specific field of microwave circuits. A number
of fundamental aspects of the nonlinear CAD problem, including simula-
tion, optimization, intermodulation, frequency conversion, stability, and
noise, are addressed and developed. For each one it is shown that. either
well-established CAD solutions are available, or at least a solution ap-
proach suitable for implementation in a general-purpose CAD environment
can be outlined. Also, the discussion shows that the various subjects are
not just separate items, but rather can be chained in a strictly logical
sequence. Finally an elementary treatment of vector processing is given, to
show that supercomputers can handle the involved large-size numerical
problems in a most efficient way.

I. INTRODUCTION

HIS PAPER surveys the application of computer-
aided techniques to the problem of nonlinear micro-
wave circuit simulation for engineering purposes.

For years, the general topic of nonlinear networks has
been a favorite among circuit theorists, as is clearly shown
by the large amount of related technical literature. As an
example, a search in the INSPEC data base revealed no
less than 4000 papers devoted to this subject in the last
eight years. More recently the interest in nonlinear circuit
techniques has begun to spread inside the microwave com-
munity, so that at present one or more nonlinear sessions
usually show up in the technical programs of all major
microwave meetings. The reasons for this increasing popu-
larity are not difficult to understand, and are closely linked
to the advance of microwave technology.

One first obvious aspect is that the ever-increasing
miniaturization of microwave circuits, with reduced ability
to trim, calls for more powerful and general design capa-
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bilities. In this respect, nonlinear circuit CAD may be
essentially viewed as the extension of classic CAD to
problems that have traditionally been treated by semiem-
pirical approaches.

There is, however, another aspect, which is more prom-
ising, though more projected into the future. The matura-
tion and spread of MMIC technology are facing us with a
dramatic evolution of the traditional concepts of circuits
and systems, which tend to be identified as long as more
and more interconnected subsystems tend to merge into a
single chip. At the same time it becomes increasingly
difficult, if possible at all, to treat subsystems as individual
items that can be separately specified and designed. Not
surprisingly, a major impulse to the development of mono-
lithic gallium arsenide circuits is being given by systems
firms. In order to be useful, CAD techniques must obvi-
ously keep pace with technological reality, which means
that conventional circuit-oriented CAD must evolve into
modern system-oriented CAD. This involves the need for
nonlinear capabilities, since system performance always
requires nonlinear functions, and the ability to deal with
very large size problems. From this viewpoint, nonlinear
circuit CAD marks an essential step toward the techno-
logical update of computer-aided techniques.

In the authors’ opinion, this clearly establishes the pres-
ent trends in nonlinear microwave CAD. On the one hand,
we have the circuit design problern, an intriguing one with
several interrelated aspects, a tentative list of which is
given below:

analysis (simulation) of a known circuit;
optimization of a nonlinear circuit;
multiple-frequency excitation (intermodulation);
frequency conversion (mixing); -

stability analysis;

noise analysis.

Some of these are very popular, while others have seldom
been touched on in the technical literature. What the paper
tries to do in this respect is to show that the state of the art
of nonlinear microwave CAD allows us to envisage a
complete set of software tools covering all these aspects
within the framework of a substantially unique philosophy.
These tools are truly general-purpose in the CAD sense,
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which means there are no restrictions on circuit topologies,
device representations, or electrical functions. To a certain
extent this requires some anticipation, since some of the
problems already have well-established solutions, while
others are still at the stage of conceptual development.

On the other hand, the extension of circuit CAD to
cover system requirements may be expected to introduce at
least one major new difficulty, that is, the very large size of
the related numerical problems. This may arise both from
the complexity of circuit topologies including several inter-
acting subsystems, and from the need to deal with broad
frequency spectra, possibly encompassing the MHz as well
as the GHz regions. In this respect, we try to demonstrate
that a key tool for the solution of this additional problem
can be provided by one of the best-known concepts of
modern computer science, namely parallel processing, and
by its most common present-day implementation, repre-
sented by supercomputers. Supercomputers have the
potential of extending to the nonlinear CAD domain all of
the design issues that are now commonplace in linear
CAD, and of making them as handy as their linear coun-
terparts.

Of course, for this to become possible, all aspects of the
general simulation problem should be consistently devel-
oped, especially passive and active device modeling. How-
ever, this paper is not going to touch on such aspects since
they are covered by specialized presentations in this same
issue, but rather will be devoted to methodology.

II. SIMULATION

The simulation of nonlinear circuits is by far the most
popular aspect of the entire job. Considerable effort and
considerable ingenuity have been spent in devising new
nonlinear analysis methods or improvements to existing
ones. During the 15th European Microwave Conference, in
Paris, an entire tutorial session was devoted to this subject
[1]; thus to avoid duplications as far as possible, only a
schematic classification and a brief highlight of some of
the best-known approaches will be reported here.

In Table I a number of analysis algorithms are organized
according to the type of description they adopt for the two
fundamental kinds of circuit components, the linear and
the nonlinear ones. Attention here is restricted to those
methods that we could name “quasi-exact,” i.e., that ad-
dress the problem in a rigorous way except for numerical
approximation, and do not rely upon a priori limiting
assumptions such as weak nonlinearity or almost-mono-
chromatic operation.

A. Time-Domain Methods

A huge amount of technical literature is available on the
general topic of nonlinear circuit simulation in the time
domain, concerning both theoretical and computational
aspects. Generally speaking, this work is not oriented
toward microwave applications; thus it is beyond the scope
of this paper to survey it. For the present purposes it will
be sufficient to quote a number of special issues of the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS [2]-{5],
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where several review papers and a very extensive bibliogra-
phy on the subject can be found. In particular, a review of
the best-known time-domain simulation programs is given
in [6].

A specific effort aimed at the extension of time-domain
techniques to cover microwave applications is currently
being made by several research groups [7]-{13]. An exam-
ple of a microwave-oriented time-domain computational
scheme is briefly outlined below. The use of suitable
models of nonlinear capacitors and inductors leads to an
equivalent circuit containing resistors and controlled
sources as the only nonlinear components [13]. The circuit
may thus be described in terms of a state vector of
capacitor voltages, inductor currents, voltages at the trans-
mission-line ports, and nonlinear resistor control variables.
Combining Kirchhoff’s laws with the voltage—current rela-
tionships of the circuit components results in the following
set of coupled differential-difference and algebraic equa-
tions with constant coefficients:

dx; du
7 =A1x+B1u+C1;

x,=A,x(t—T)+ Bu(t—T)

0=Ayx;+Apx,+ Bu+ F(x,u,1)

du
y=A,x+Bu+C,— (1)
dt
where
x, vector of lumped state variables,
x, vector of distributed state variables,
X5 vector of nonlinear resistor control variables,

x overall state vector,
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A, B,C time-independent circuit matrices,

source vector,

transmission-line delays,

vector of nonlinear resistor characteristics,
output vector.

e MmN w

The system (1) is directly solved in the time domain by a
suitable integration scheme [14], [15], requiring the solu-
tion of a set of nonlinear algebraic equations at each
iterative step. The starting point is usually chosen as the
result of a dc analysis.

Apparently, methods that work entirely in the time
domain should represent the most natural and straightfor-
ward approach to the simulation problem. As a matter of
fact, real-world circuits do work in the time domain, and
semiconductor devices are naturally described in the time
domain, too. However, such methods generally suffer from
two major inconveniences. First of all, the only available
means of accurately computing and measuring linear mi-
crowave components is to work in the frequency domain
under sinusoidal excitation, except of course for elemen-
tary ones. Thus the difficulties come from the time-domain
analysis of the linear subnetwork whenever realistic com-
ponent models are to be dealt with. For instance, the
description of a device as simple as a microstrip line with
frequency-dependent propagation constant and character-
istic impedance still represents a problem in the time
domain. Of course, in principle one could think of such
approaches as frequency-domain to time-domain conver-
sions and convolution integrals [16], [17], but the practical
feasibility of this still has to be demonstrated. The second
point is numerical efficiency. An analysis based on the
direct integration of the time-domain network equations
would typically spend most of its computational effort on
transient evaluation, while most of the user’s interest is
concentrated on steady-state information. To give a repre-
sentative idea of what this means quantitatively, let us
consider, for instance, some of the numerical results pre-
sented in [12]. Fig. 3 of this paper shows that the analysis
of a circuit as simple as a biased FET without anything
else requires the consideration of at least ten RF periods to
reach steady state when using SPICE, one of the best-
known time-domain simulators [18]. Similar conclusions
are reached in [19]. Also, the situation may be definitely
worse for more complicated circuits, not to mention spe-
cial cases involving high-Q components, such as dielectric
resonators.

For this reason, considerable effort has been spent by
circuit theorists in devising techniques allowing the calcu-
lation of the transient to be at least partially bypassed and
the steady state to be reached quickly. The basic concept is
usually the evaluation of a set of initial conditions from
which the network starts in periodic steady state. The
so-called shooting methods [20]-[23] consist of a direct
search for such initial conditions by a Newton iteration or
some other nonlinear optimization technique. An alterna-
tive approach is to compute the state of the circuit at a
number of instants by time-domain integration, and then
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to extrapolate from these by algebraic methods the state
from which the network starts in time-periodic regime [24].
We limit ourselves to this brief mention because the appli-
cation of these approaches to microwave circuits has been
only marginal.

A limiting form of the same ideas is represented by
those methods that completely disregard the transient and
directly focus on the steady state. The physical unknowns
of the problem are still represented by state-variable wave-
forms, but the formulation is such that these waveforms
are a priori guaranteed to be time-periodic. For numerical
purposes the waveforms are approximately described by a
discrete set of scalar unknowns; if the discretization is
carried out in the frequency domain this leads to
harmonic-balance methods.

B. Harmonic-Balance Techniques

A quick review of the fundamentals of this approach is
worthwhile because of the key role it plays in modern
nonlinear CAD techniques. The network is first decom-
posed into a linear and a nonlinear multiport subnetwork
having the same number of ports, n,. The subdivision
criterion usually represents a tradeoff between two oppo-
site needs: on the one hand, n, should be kept to a
minimum for optimum numerical efficiency, while on the
other, increasing the number of ports usually makes for an
casier description of the nonlinear subnetwork.

The latter is represented by a set of time-domain nonlin-
ear equations. Although this can be done in a number of
ways, for the sake of generality and for later convenience
we shall make use of the following system of parametric
equations:

o) =elx(0. 5 o]
i(t)=¢[x(t),%,--- itf] )

where v and i are vectors of instantaneous voltages and
currents at the nonlinear subnetwork ports, and x is a set
of time-dependent quantities used as state variables. ¢ and
Y are nonlinear and analytically or numerically known.
The linear subnetwork is described in the frequency
domain. For maximum generality its equations are written
in the form o
A(w)V(w)+B(w)I(w)+D(w)=0 (3)

where 4 and B are circuit matrices, ¥ and I are vectors of
voltage and current phasors at the network ports, and D is
a set of driving functions. For a well-conditioned network
all vector quantities appearing in (2) and (3) have the same
size np. '

In steady state, the state-variable waveforms are ap-
proximated by

2= X Xeexp(kon) @

(X*,=X,, *=complex conjugate), where w, is the
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fundamental angular frequency of the time-periodic reg-
ime. Thus the steady state is completely identified by the
vector X of all X,’s (state vector).

The circuit analysis problem now consists of finding the
state vector X in such a way that the time-domain voltages
and currents obtained from (2) through (4) have spectral
components satisfying (3) at w = kw, (0 <k < Ny). Mak-
ing use of the fast Fourier transform, one obtains the
nonlinear solving system

E(X)=0
where the kth subvector of E, namely
E (X)=A4(kawy)®,(X)+ B(kw,)¥(X)+ D(kw,) (6)

(5)

(0 <k < Ny) is a set of harmonic-balance errors at kw,.
Note that (5) is equivalent to a system of

N=n,(2N,+1)

(7)

real equations in as many real unknowns. Thus for a
forced or nonautonomous circuit, the problem is well
posed from a mathematical viewpoint. For an autonomous
circuit of given topology (D(kw,)=0 for k+0,4,B
a priori assigned), only dc solutions will exist in general.
Nonstatic solutions may, of course, exist for some values
of the fundamental, so that w, must be regarded as an
additional real unknown in (5). As a consequence, one of
the remaining real unknowns (e.g., the phase of one of the
harmonics) may be arbitrarily chosen, and the electrical
regime is invariant with respect to a shift of the time
origin. Note, however, that this situation is somewhat
unusual in microwave engineering practices: most often
one is faced with oscillator design problems whereby w, is
a priori fixed as a design goal. The required degree of
freedom must then be available under the form of a free
circuit parameter, so that the problem becomes one of
circuit optimization from the CAD viewpoint (see Section
III).

The method outlined above is known as the “piecewise”
harmonic-balance technique [25], and has the advantage
that the required number of state variables is equal to the
number of linear subnetwork ports, no matter what the
actual number of lumped or distributed reactive compo-
nents. Thus the problem size is considerably reduced with
respect to time-domain techniques and to earlier imple-
mentations of the harmonic-balance concept [26]. As an
alternative to the piecewise harmonic-balance technique, a
nodal analysis approach has also been proposed in [27].
The same reference also provides an in-depth review of
harmonic-balance concepts.

Note that the harmonic-balance method takes advantage
of the most accurate and straightforward approach to the
simulation of both linear and nonlinear circuit compo-
nents.

Harmonic-balance techniques have been used very ex-
tensively in the technical literature to analyze virtually any
kind of nonlinear microwave subsystem. Most applications
are based on the general guidelines presented above, ex-
cept for minor details. On the other hand, a number of

different strategies have been developed in order to solve
numerically the system (5). Some of these deserve a brief
discussion because of their conceptual importance and
widespread acceptance.

1) Direct Methods: The conceptually simplest way to
solve the problem is to directly apply to (5) any numerical
system-solving algorithm. Such solution routines are avail-
able in virtually all mathematical libraries (e.g., CERN,
IMSL). For well-behaved circuits (e.g., weakly nonlinear),
a simple Newton iteration is often sufficient to quickly
achieve convergence: this is usually the case for circuits
containing only FET’s as the active elements.

As a more robust, but less efficient, alternative [28], one
can use a nonlinear optimization scheme to minimize the

objective function

E(X) =|E(X)] (8)
representing a combined harmonic-balance error (|| || in-
dicates the norm). Of course, some care must be taken in
choosing the numerical algorithm. In the user-oriented
CAD perspective, it is absolutely mandatory that the anal-
ysis algorithm be able to reach convergence starting from
initial values automatically set by the program in a con-
ventional way; this means that there is no starting-point
information available. An effective though obvious way to
obtain this result is to approach the solution by a direct
search scheme and then to refine it by a Newton iteration.
Excellent results have been reached by Powell’s method
[29]. Quasi-Newton methods [30] also yield satisfactory
performance: in a sense they represent a different imple-
mentation of the same concept, since they also rely upon a
combination of one-dimensional searches and gradient
iterations. The starting point may be just taken as zero for
nonautonomous circuits; for self-oscillating networks it is
usually better to initially set to a suitable nonzero value
the magnitude of the harmonic that most directly affects
the circuit output power. This has the effect of avoiding
the static solution, which generally exists in the autono-
mous case.

2) Continuation Methods: Convergence of direct itera-
tive approaches may sometimes be improved by continua-
tion methods [31], which have been successfully applied to
nonlinear microwave circuit problems by several authors
[32]-[35]. In this case, the original problem (5) is replaced
by an auxiliary one of the form

F(X,p)=0 (9)
where F is continuously dependent on a parameter p. The
auxiliary problem (9) is defined in such a way that a
solution X° is known for a certain value, say 0, of the
continuation parameter, and that the original problem is
reobtained for a different value, say 1. Thus

F(X°,0)=0
F(X,1)=E(X). (10)
The required solution X can now be generated starting
from the known vector X° by a step-by-step mechanism,

through a sequence of intermediate solutions correspond-
ing to increasing values of p. Each intermediate step is
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obtained by solving a nonlinear problem which is very well
conditioned, because its starting point and solution can be
made as close as desired by making correspondingly small
the step of the continuation parameter. Multiple solutions
can be found by extending the generation of the solution
curve beyond the first operating point, of course in the
case where the curve itself bends back towards the p=1
position. Very sophisticated algorithms available in the
literature allow the path to be followed across the turning
points [36]. '

It is not easy to establish in general whether or not the
use of a continuationr method does yield a consistent
performance improvement with respect to the correspond-
ing direct solution approach. The authors’ experience tends
to show that they are roughly equivalent from the view-
point of computational efficiency. In principle, continua-
tion methods guarantee that a solution can always be
reached by taking sufficiently small steps of the continua-
tion parameter, while obviously direct methods do not
provide the same assurance. On the other hand, direct
methods are very simple and flexible, and lend themselves
nicely to the implementation of circuit optimization
schemes, as will be shown later on.

In both cases, a key step for obtaining good computa-
tional efficiency is to make use of the gradient evaluation
algorithm outlined below {27], [37]. This mechanism is
based on the assumption that the Jacobians of the nonlin-
ear subnetwork equations (2) with respect to the state
variables and to their time derivatives are available in
closed form and can be represented by Fourier expan-
sions:

]
mp
oy -~
Fro LD, ,exp(jpwot) (1)

m p
where y,, =d"x/dt™, 0 <m<n. As we shall see, these
expansions play an important role in the solution of the
generalized mixer problem and of the related problems of
stability and noise analysis. Once the coefficients C,, ,,
D,, , have been found by the FFT, the Jacobians of the
harmonics ®,, ¥, with respect to the state-variable
. harmonics may be expressed as [37]

3@, i

BX:( = mz;.o(js‘*’o) Cok—s

v n m

ﬁjﬁ: Z (jst) Dm,k—s' (12)
s m=0

Note that all vector quantities appearing in (11), (12) have
the same size n, (i.e., the number of nonlinear subnetwork
ports).

3) Relaxation Methods: As an alternative to the search
strategies described above, the harmonic-balance equations
may be solved by relaxation methods [40]-[45]. In the
simplest approach, the vector of state variables x(z) is
chosen as a set of n, voltages or currents at the nonlinear
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subnetwork ports, and it is assumed that the corresponding
circuit matrix of the linear subnetwork exists.

Let the complementary set of voltages and currents be
denoted by y(t), and its vector of harmonics by Y. The
time-domain analysis of the nonlinear subnetwork by (4)
and (2), and the subsequent use of the FFT then establish
a relationship of the form

Y=T(X) (13)
where T is a (numerically defined) nonlinear vector oper-
ator. The frequency-domain equations of the linear subnet-
work are now written as

X=HY+D (14)
where H is a hybrid matrix and D represents a set of
driving functions (D # 0). Combining (14) with (13) leads
to the solving system

X=HT(X)+D=F(X) (15)

which is now formulated as a fixed-point problem of the
vector nonlinear operator F. This is naturally suited for a
relaxation approach; if the ith estimate of the state vector
is denoted by X, the most obvious iteration scheme is
defined by

XD =F[x®]. (16)
It is quite clear that this approach is potentially attractive
because of its reduced computational cost; however,
its reliability is limited because convergence cannot be
a priori guaranteed [38]. )

To improve the rather poor convergence properties of
the direct iteration (16), more sophisticated iteration
schemes have been proposed. An effective and popular
one, which was successfully applied to diode and FET
circuits [40]-[42] uses the following update mechanism:

17)

where P is a diagonal matrix of iteration-dependent
convergence parameters, and 1 is an identity matrix.
Although (17) can be brought to perform much better
than (16) by a suitable choice of the convergence parame-
ters, its convergence properties still remain critically re-
lated to the specific aspects of each individual problem,
and in particular to the impedance level of the nonlinear
subnetwork [41]. Low impedances improve convergence
when voltages are chosen as the independent variables,
and conversely. This criticality can be easily inferred, for
instance, from [41, fig. 6]. In this case a 5-Q change of the
nonlinear subnetwork impedance separates a condition of
optimum convergence rate from one where convergence is
not achieved at all. An important consequence of this
situation is that the choice of the state variables is usually
not free, but rather is dictated by the frequency behavior
of the linear subnetwork. In turn, this implies that the
time-domain analysis of the ncnlinear subnetwork may
require the integration of a set of differential equations

XUtD = pPOF[XD]+[1- PO]XO
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[41]. Think, for instance, of a varactor diode for which the
current rather than the voltage has to be used as the state
variable in order to obtain convergence. In such cases, the
computational advantage of relaxation methods with re-
spect to direct solution methods becomes questionable.

It is noteworthy that the convergence properties may be
improved by resorting to even more complex iteration
strategies. As an example, x(¢) and y(¢) could be defined
as two independent combinations of all voltages and
currents at the nonlinear subnetwork ports, which of course
can lead to considerably increased complication in the
numerical definition of the nonlinear operator F. A good
choice turns out to be the use of incident and reflected
waves, rather than voltages and currents, as the state
variables, since this takes advantage of the subunitary
nature of the scattering matrix [43]. A very well known
approach falling within this class is Kerr’s multiple-reflec-
tion method [39].

The above discussion makes it clear that relaxation
methods are not ideal candidates for general-purpose CAD
applications or for nonlinear circuit optimization because
of a certain lack of reliability. Furthermore, they are
usually not very well suited for analyzing nonlinear circuits
having multiple operating points, such as oscillators or
frequency dividers. On the other hand, relaxation methods
can represent an excellent choice for specialized applica-
tions, or as a backup to conventional harmonic-balance
techniques in general-purpose programs.

C. Other Analysis Approaches

To conclude this brief and by necessity incomplete
survey of nonlinear analysis methods, we would like to
mention two other approaches that are potentially interest-
ing, but of course do not share the maturity and widespread
acceptance of the previously described ones.

One of them is referred to as the “power-series” method
in Table I [45]. It is a harmonic-balance technique, but is
based on a generalized power-series description of the
nonlinear components [46], [47]. Once this has been devel-
oped, which is not necessarily an easy job, all required
calculations may be carried out in the frequency domain,
thus avoiding any time-consuming Fourier transforms.

The other one, which was arbitrarily named the “sam-
ple-balance” method in Table I, may be viewed in a sense
as the dual of harmonic-balance techniques. It relies upon
a direct time-domain approximation of the state-variable
waveforms by suitable basis functions such as periodic
cubic splines [48], [49], and uses time-domain samples as
problem unknowns. The errors to be minimized are pro-
duced by comparing time-domain samples of the linear
and nonlinear subnetwork responses. The linear subnet-
work is analyzed in the frequency domain and its time-
domain response to an elementary excitation is found once
for all by Fourier transformation; at any subsequent step
the time-domain response to a general driving force is
simply found by linear superposition.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 2, FEBRUARY 1988

III.

From the general CAD viewpoint, circuit optimization
obviously represents a most important goal, and a natural
follow-up to the analysis problem. In the linear CAD case,
the transition from the latter to the former is stepless: once
a suitable analysis algorithm has been developed, this can
be coupled to a minimization program—in the simplest
case an off-the-shelf one—to produce an optimization-
based design capability. Unfortunately this is not true in
the nonlinear case, which could give a possible explanation
of the striking disproportion between the considerable
number of studies in the technical literature devoted to
analysis methods and the sporadic attention paid to opti-
mization. According to the authors’ experience, there are a
few basic reasons for this, which can be synthesized as
follows.

As a first point, a full analysis of a nonlinear microwave
circuit is typically too time-consuming to be effectively
used as the objective-function generation mechanism within
an optimization loop. A straightforward consequence is
that the conventional linear optimization scheme is not
applicable to nonlinear circuits: in fact, using a steady-state
analysis to generate the objective function to be minimized
would result is exceedingly large computer costs. Nonlin-
ear circuit optimization thus requires the development of
specialized algorithms based on the integration of the two
fundamental aspects of circuit analysis and function mini-
mization. The general rule is that the approach adopted
should not require a full nonlinear analysis to be carried
out at each step of the optimization loop. If we accept this
viewpoint, we can go over the various analysis algorithms
to understand whether or not they are potentially useful
for optimization purposes. The most obvious candidates
are those methods treating the analysis itself as an optimi-
zation problem, since any constraint arising from electrical
specifications can be added to the objective function in a
simple and straightforward way.

One of the first attempts to apply these principles in
conjunction with time-domain methods, and more pre-
cisely shooting methods, was reported by Director and
Wayne Current in 1976 [50]. Their approach is briefly
described below. As in conventional shooting methods
[20]-[23], the unknowns are a set of initial conditions from
which the network starts in periodic steady state. If the
vector of state variables is denoted by x(z), such condi-
tions will be represented by x(0). These unknowns are now
complemented by a set of linear circuit parameters, namely
P, so that the overall set of designable parameters is given
by

OPTIMIZATION

U=[x"(0), p7]" (18)

the superscript T denoting transposition. The objective
function to be minimized is defined as [48]

F(U) = fOT"{El[x(t), U, t]+ E,[x(¢),U,¢]} dt (19)

where T, =27/w, is the steady-state period. In (19), E,
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represents a suitable performance function arising from
the design specifications, while E; has the expression

E[x(1),U,1] = [x(t)—x(O)]ng'

and thus introduces the steady-state condition. The state
x(1) is obtained by a time-domain integration of the usual
circuit equations with starting point x(0). To solve the
problem, the objective F is simultaneously minimized with
respect to the whole set of unknowns U.

Note, however, that this attempt was partially unable to
meet its main goal, that is, the elimination of any complete
steady-state nonlinear analysis within the optimization
loop. In fact it was found [50] that a steady-state analysis
had to be performed before every gradient evaluation of
the quasi-Newton algorithm adopted. Otherwise the itera-
tion would often converge upon a set of initial conditions
that were found not to represent a steady state after
running a time-domain analysis over many cycles.

This experience clearly suggests that the aforementioned
optimization concepts can only be brought to a fully
satisfactory implementation in conjunction with those
methods that a priori guarantee the periodicity of the
electrical regime, such as harmonic-balance techniques.

An approach to nonlinear circuit optimization based on
the harmonic-balance concept is outlined below [51], [52].
This time the set of designable parameters is

u=[x"p"]" (21)
where X is the vector of all state-variable harmonics. The
objective function arises from two contributions, one of

which is the harmonic-balance error, while the other
originates from the design specifications. We thus have

F(U)=[IE(U)|* + E3(U)]" (22)

which appears as an extension of the objective (8) used for
a plane analysis. The second term, E,, is defined in such a
way that E,=0 when all specifications are met, and
E, > 0 otherwise {51].

Once again, to solve the problem, F is minimized with
respect to U by any nonlinear programming algorithm.
However, this time the numerical procedure turns out to
be very robust and reliable, and to be successfully applica-
ble to both forced and autonomous circuits [53], [54]. The
need for repeated nonlinear analyses is completely
eliminated, and the gap between analysis and design CPU
time requirements is effectively bridged. This partly hap-
pens because the number of unknown circuit parameters is
usually small with respect to the number of harmonics in a
well-posed problem, and partly because the availability of
some degrees of freedom in the linear subnetwork often
makes it easier for the minimization algorithm to reach the
harmonic balance.

It is worth mentioning that the ability to carry out a
constrained harmonic-balance analysis also allows some
typical limitations of this class of techniques to be easily
overcome. As an example, in an autonomous circuit the
static solution of the circuit equations may be eliminated

(20)
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just by requiring a finite output power. Similarly, multiple
operating points may be detected by adding suitable per-
formance specifications [37], even if they do not belong to
the same solution path from the viewpoint of continuation
methods {35].

The high degree of maturity achieved by the technique
described above leads to the easy prediction that any other
conceptually related analysis algorithm may be success-
fully used in a quite similar way for optimization purposes.
This is obvious, for instance, for the power-series method
that was mentioned previously, since this is still a
harmonic-balance approach, making use of a frequency-
domain, rather than time-domain, device description.
Another good candidate is what we called the “sample-
balance” technique: in this case the unknowns to be
simultaneously optimized would be represented by linear
network parameters and time-domain samples of the
state-variable waveforms.

Continuation methods have also been shown to be us-
able for nonlinear circuit optimization [32]-[34]. The un-
derlying idea is still to avoid any full nonlinear analysis to
be carried out within the minimization loop; however, this
is now obtained by the typical philosophy of this kind of
approach. The objective is optimized by a sequence of
one-dimensional minimizations making use of a direct-
search strategy such as Powell’s method [29]. A regular
analysis of the starting point is first performed by the
standard stepped-parameter approach. In all subsequent
objective-function evaluations the parameter is kept con-
stant. Continuation is applied with respect to the circuit
variables to generate the required steps of each one-dimen-
sional search: the basic concept is essentially to keep small
enough the steps along the search direction.

In this way every objective-function evaluation does
require a nonlinear analysis, but this can be performed
much more quickly than a regular one because a starting
point very close to the solution is always available. The
result is an order-of-magnitude speedup with respect to a
brute-force optimization approach. However, the overall
procedure is less efficient than the direct optimization
described earlier, because the computation of the objective
function is slower, and the one-dimensional search strategy
is not optimal due to the limitations on step size.

An Example of Application

At this stage, we would like to discuss a simple example
which is intended to give a fecling of what a powerful
design tool a harmonic-balance optimization program may
represent, and how deep an insight into circuit behavior
can be obtained by this kind of technique. We consider the
circuit depicted in Fig. 1 and we assume for the time being
that the feedback branch AB is cut away so that we are
simply left with a biased FET with input and output
matching networks. It is quite clear that this topology can
be used to do almost anything provided that the matching
sections are suitably chosen. We assume that the circuit
has to work as a regenerative frequency divider by two.
For this purpose the input section is designed as a band-
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stop filter at the output frequency, and conversely, and the
remaining degrees of freedom are optimized together with
six gate and drain voltage harmonics for a conversion gain
of 0 dB with an input power level of 6 mW at 9.4 GHz.
What happens is that the optimization fails to converge,
even though more complicated matching network topolo-
gies and different input drive levels are tried. An inspec-
tion of the results clearly shows the reason for this: the
output frequency components cannot be balanced at the
FET gate, because the device has an input impedance with
a significant real part but is reactively loaded by the input
filter. The two possible solutions are to suppress the input
filter, which is obviously undesirable, or to introduce some
degree of parallel feedback, such as connecting nodes 4, B
by an LC branch, as shown in Fig. 1. Once this has been
done, the circuit can be designed with no further complica-
tions, and a behavior in agreement with experimental
observations [55] can be predicted.

Of course, in this case the answer was a priori known,
but the general principle still remains valid: even an unsuc-
cessful optimization may provide useful design informa-
tion, because the available circuit description is so detailed
as to make it normally easy to find out where the difficul-
ties come from. It is worth mentioning that the application
of time-domain techniques to the same problem would
only lead to the obvious result that the initial topology
behaves as a low-efficiency frequency multiplier, with no
indications on how the final goal could be met.

IV. MuULTIPLE-FREQUENCY EXCITATION

The preceding discussion referred to nonlinear circuits
supporting strictly time-periodic electrical regimes, de-
scribed by a truncated Fourier expansion of the form (4).
However, all results are equally valid for a quasi-periodic
regime containing all possible intermodulation products of
a number of non-harmonically related “exciting tones.” In
this case the mathematical representation (4) of the steady
state is replaced by

x(1)= Zk:Xkexp(jzl:k,wlt) (23)

>

Schematic topology of a microstrip regenerative frequency divider.

(X *, = X,), where w, is the angular frequency of the ith
exciting tone. Truncation is now performed by taking into
account only those intermodulation products whose order
does not exceed a prescribed integer [56], that is,

Y ik < Ny (24)

It is worth mentioning that the term “exciting tone” should
be interpreted here in the very broad sense of any sinusoidal
signal existing in the circuit, independent of its physical
origin. This includes sinusoidal pumps and autonomous
oscillations, as well as any parametric or spurious tone that
the circuit might generate.

With respect to the strictly periodic case, dealing with a
quasi-periodic regime does not introduce any special con-
ceptual difficulty; problems that do arise are essentially of
a practical nature and invariably relate to numerical ef-
ficiency.

In the time domain, a direct integration can be
performed in the usual way, independent of the num-
ber of sources acting in the circuit, until steady state is
reached. However, in this case the steady state may have
quite a long period—theoretically may not be periodic at
all—which makes it difficult to determine how long it
takes for the transient component to die out. Furthermore
some typical multitone circuits, such as mixers with a low
IF, may contain large time constants with respect to the
RF period, which in turn may considerably slow down the
achievement of steady-state conditions. Once again, some
improvement may be obtained from shooting methods.
For instance, Chua and Ushida [57] describe an algorithm
based on a combination of shooting methods and least-
squares waveform approximation, yielding both the initial
point from which the network starts in steady state, and
the Fourier coefficients of the steady state itself. However,
the overall job still remains computationally heavy;
frequency-domain methods are more appealing because of
their ability to directly focus on the steady state.

From the standpoint of harmonic-balance techniques
the critical step is the evaluation of the frequency-domain
response of the nonlinear subnetwork to a quasi-periodic
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input. In the case of commensurate frequencies, one could
simply replace the quasi-periodic regime by a strictly peri-
odic one by taking the greatest common divider of the
exciting tones as the fundamental, and then proceed in the
usual way [58]-[60]. Of course, if the fundamental is too
low, the required sampling rate, and the corresponding size
of the Fourier transforms, may turn out to be so large as to
make this approach totally impractical. An efficient alter-
native is using a multidimensional grid of sampling points
associated with multidimensional Fourier analysis to solve
the problem [61]. This method has the advantage of being
directly applicable to any combination of exciting frequen-
cies, whether or not they be commensurate, with computa-
tional times independent of the actual frequency values.
Another possible approach [62] is to carry out the trans-
form by solving a linear system based on a nonuniformi
sampling scheme, whereby the sampling points are chosen
so as to avoid ill-conditioning of the solving system.

These straightforward solution schemes are somewhat
time-consuming, but have the advantage of programming
simplicity, and provide a quasi-exact reference which can
be used to establish the accuracy of approximate solutions.

As a matter of fact, a number of numerical procedures
have been developed with the aim of reducing the compu-
tational burden of the harmonic-balance treatment of
quasi-periodic regimes. For the sake of brevity we shall
limit ourselves here to a short mention of some of the
best-known and conceptually more relevant ones.

In [56] the response of the nonlinear subnetwork to a
multitone excitation is uniformly sampled in the time
domain. These samples are approximated in the least-
squares sense by a generalized Fourier series of the form
(23), thus producing an estimate of the spectral compo-
nents of the nonlinear response.

In {63]-[65] the nonlinear subnetwork response is sam-
pled at a much lower rate than the Nyquist rate, and
Fourier transformed. To eliminate aliasing effects, the
process is repeated a number of times with suitably shifted
input spectra, and the resulting output spectra are linearly
combined.

In [35] the original sparse spectrum (groups of lines
separated by large gaps) is mapped onto an auxiliary dense
spectrum (little or no gaps) by selecting a suitable set of
conventional source frequencies. Calculations are carried
out on the auxiliary spectrum, requiring a drastically re-
duced sampling rate.

In [66] each spectral component of interest is first shifted
to dc by performing a frequency shift over the entire
spectrum, and is then isolated by passing the shifted signal
through a digital bandpass filter of suitable bandwidth.

Finally, a special mention is deserved by the power-series
approach [67], [45], [68]. In this case the input and output
spectral components are algebraically related by an ex-
plicit formula, which was developed by several authors in a
number of subsequent steps [69]-[72}, so that Fourier
transforms are eliminated from the numerical procedure.
Computational accuracy then only depends on the reliabil-

ity of the power-series representation of the nonlinear
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subnetwork, and in particular on its convergence proper-
ties.

V. FREQUENCY CONVERSION

An approximate solution has also been developed for
the special case of a nonlinear circuit driven by two
sinusoidal signals, one being very weak with respect to the
other. This is commonly referred 1o as the mixer case, and
is obviously very important from the technical viewpoint,
which explains the good deal of attention that has been
devoted to this specific subject. For once, there is almost
general agreement in the technical literature as to how a
mixer analysis problem should be dealt with. The com-
monly adopted approach relies upon the concept of the
conversion matrix of the nonlinear subnetwork [73]-[80].
The basic idea is to consider the weaker, or radio-frequency
(RF), signal as a small perturbation of a time-periodic
steady-state regime, which may be established either by
pumping the circuit with the stronger signal—the local
oscillator (LO)—or by self-oscillation. The nonlinear sub-
network equations are then linearized in the neighborhood
of the steady-state regime to find the circuit response to
the injection of an additional small RF signal. Note the
conceptual similarity of this approach to the conventional
linearized description of the small-signal operation of a
nonlinear device around a fixed bias point. As we shall see
this analogy is of considerable help for an intuitive com-
prehension of a number of related topics, such as stability
and noise.

In the mixer case, the periodic time dependence of the
unperturbed regime leads to the generation of intermod-
ulation products which in mixer terminology are called
sidebands. Due to the assumed smaliness of the RF signal,
however, the situation is considerably simpler than for a
general two-tone excitation, since only first-order products
in w, may be retained. Let the steady-state regime estab-
lished under LO drive with the RF signal suppressed be
denoted by #(z). Then the quasi-periodic regime under
combined LO and RF excitation is represented to first
order by

x(t)=%(t) + Re %AXﬁm%j@@+k%ﬁ} (25)

where «,, w, are angular frequencies of the LO and RF
signals, and AX, is a vector of spectral components at the
kth sideband. Similar expressions hold for the voltages
and currents at the nonlinear subnetwork ports (with AX,
replaced by AV, , AI,, respectively).

If the nonlinear subnetwork equations (2) are now lin-
earized around Xx(¢), linear relationships are established
between the sideband amplitudes AX,, AV,, AI,. We can
express such relationships by the compact matrix notation

AV=PAX
AT=QAX (26)

where AX is the vector of all AX,’s, and similar. We call
(26) the conversion equations of the nonlinear subnetwork.
In particular, if @ or P is nonsingular, we can eliminate
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AX between eqs. (26) and write

AV=PQ *AI=Z, AI (27)

or
AI=QP 'AV=Y, AV (28)

where Z,, Y, are the impedance conversion matrix and the
admittance conversion matrix of the nonlinear subnet-
work, respectively.

The time-domain description (2) of the nonlinear sub-
network lends itself nicely to a straightforward computa-
tion of the conversion matrices for a general nonlinear
device [80]. In this case the Jacobians (11) must be avail-
able, since they are required to carry out the linearization.
Making use of the expansion coefficients defined by (11),
we introduce the square matrices of size 7 p:

Pk,p= Z {j(wR+kw0)}mCm,p

m=0

Qk,p= Z {j(wR+kw0)}mDm,p (29)
m=0

where n is defined in (2). Then the conversion matrices

P, Q appearing in (26) are defined by [80]

P= [Pk,sﬂk]
0= [Qk,s—k] (30)

where s acts as the row index, and k as the column index,
of the generic (n X np) submatrix. If N, harmonics are
retained to describe the local-oscillator regime, so that
— Ny <k < Ny as in (4), then the truncated size of the
conversion matrices is given by the same number N =
n (2 Ny +1) defined by (7).

Note that the Fourier coefficients of the Jacobians used
to compute (30) through (29) are the same ones
needed to find the gradient of the harmonic-balance error
through (12). Thus after performing a harmonic-balance
analysis, such coefficients will automatically be available,
and the derivation of the conversion matrix will become
trivial. This is the reason why most mixer investigators use
the harmonic-balance technique to determine the local-
oscillator regime. For some simple devices these Fourier
coefficients also have an immediate physical meaning: for
instance, in the case of a nonlinear current source, they
coincide with the Fourier coefficients of the differential
conductance [73]. When (2) may be interpreted as the
equations of a nonlinear equivalent circuit, it is also possi-
ble to combine the conversion matrices of elementary
components by circuit-like algebra to find the conversion
properties of the entire nonlinear subnetwork [77].

At this stage, mixer analysis has been reduced to a
matter of linear circuit algebra. The situation is depicted in
Fig. 2. The nonlinear subnetwork is replaced by a linear
circuit described in the frequency domain by the conver-
sion equations; each smaller block represents the linear
subnetwork at one of the sidebands. Performing the re-
quired circuit connections leads to a matrix description of
the mixer as the resulting two-port.

LINEARIZED NONLINEAR SUBNETWORK
DESCRIBED BY TS CONVERSION EQUATIONS
[ne * (2N,+1) PORTS]

n, PORTS n, PORTS n, PORTS
LINEAR LINEAR LINEAR
SUBNETWORK SUBNETWORK SUBNETWORK
AT wg AT o + Ky AT @

kTH SIDEBAND
RFINPUT
PORT

IF QUTPUT
PORT

AAA—o-

RF SOURCE IF LOAD

Fig. 2. Linearized equivalent circuit of a microwave mixer.

It is worth mentioning that this linearized behavior must
be dealt with some caution. In fact, the two-port mixer
matrix just mentioned is not usable for design purposes,
except, of course, for a hand-driven optimization whereby
a circuit parameter is manually changed and the whole
analysis procedure is repeated each time. This is easily
explained: assume, for instance, that an input matching
network is designed on the basis of the linearized matrix
description. If this network were connected with the RF
port, the whole local oscillator regime would change, and
so would the mixer matrix; the designed matching section
would thus become meaningless. If we recall the analogy
with the small-signal operation of a dc-biased nonlinear
device, the same situation would occur if the addition of
RF circuitry did result in a change of the bias point. The
difference is that the bias circuit can be isolated from the
RF by suitable dc-blocking devices, while obviously the
local-oscillator regime cannot.

It follows that computer optimization of microwave
mixers still remains an open problem: the only viable
approach reported in the literature was a direct harmonic-
balance optimization implemented on a supercomputer
[59], [81].

It should be mentioned here that in the recent technical
literature the mixer problem has been treated by several
authors [58]-[60], [64], [82] as a conventional nonlinear
analysis problem with multiple-frequency excitation (see
Section IV). This approach is computationally heavier, but
allows nonlinearizable aspects such as conversion-gain
compression [59] and intermodulation distortion [82] to be
accounted for. With some limitations, intermodulation dis-
tortion in diode mixers has also been analyzed by a
stepwise procedure based on the conversion-matrix tech-
nique [83].

The frequency-conversion analysis outlined above is not
only a numerical tool for the simulation and design of
microwave mixers. It is also the kernel of a generalized
perturbation analysis of periodic steady-state regimes sup-
ported by nonlinear microwave circuits. This analysis is
compatible with a frequency-domain description of the
linear subnetwork, and can thus take advantage of state-
of-the-art techniques for passive circuit modeling [84], [85].
As will be shown in the following sections, such advanced
and complicated problems as generalized stability and
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noise analysis can be treated by the same perturbative
approach with suitably chosen boundary conditions. Thus
frequency-conversion analysis represents a key step toward
the development of a general-purpose nonlinear micro-
wave CAD system that is not confined to the traditional
aspects of circuit simulation and optimization.

VI. STABILITY

If in Fig. 2 we suppress the RF source, the same circuit
diagram becomes useful for investigating the stability of
the local-oscillator regime. From a more general stand-
point, the figure represents the linearized equivalent circuit
of the original nonlinear network in the neighborhood of
any time-periodic steady-state solution of the network
equations. It may thus be used to establish a general-pur-
pose approach to the stability analysis of any such solution
which will be developed in the first part of this section.
This analysis is restricted to local or conditional stability
[86], in the sense that the results are only valid in the space
of small perturbations of the steady state. Even if the
latter is stable in this respect, a large perturbation may
force the circuit to abandon it permanently and to jump to
a different stable state. This wider viewpoint requires a
global stability analysis, to be discussed in the second part
of this section.

The stability analysis described here does not require
any limiting or simplifying assumptions on circuit behavior
and is thus considerably more advanced than most previ-
ously available solutions of the same problem [87]-[94],
many of which it includes as particular cases. Its accuracy
is only limited by the high-frequency behavior of the linear
and nonlinear subnetwork models [94]. However, since this
treatment is based on the same principles leading to mixer
analysis via the conversion-matrix concept, its practical
validity is indirectly but reliably checked by the large
amount of successful mixer work available in the literature
[73]-[79].

A. Local Stability

We first derive a characteristic equation for the natural
frequencies of the linearized equivalent circuit shown in
Fig. 2. Let a small perturbation of complex frequency
o + jw be superimposed to the steady-state solution ¥(¢).
The resulting electrical regime can be represented to first
order by

x(t) =%(t)+exp(ot) Re zk‘,AXkexp{j(w + kwy)t}
(31)

which is identical to (25) except for the amplitude factor.
Similar expressions hold for the voltages and currents.
o+ jw is a natural frequency of the steady state if the
spectral components of the perturbation satisfy the lin-
earized network equations. For the nonlinear subnetwork
this means that (26) must hold with w, replaced by w — jo.
For the linear subnetwork, which is now source-free, we
use the frequency-domain equations (3) with D(w)=20.
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We can gather all sidebands w4+ kw, into the compact
matrix notation

A, AV+B,AI=0 (32)

where
A, =diag[4(w— jo + kw,)]
B, =diag [ B(w — jo + kw,)]. (33)

Combining (26) with (33) yields the desired eigenvalue
equation:

(A, P+ B,0)AX=0 (34)
so that the characteristic equation for the natural frequen-
cies is

det(4,P+ B,Q)=A(o+ jw)=0. (35)

The above procedure can be considered the generalization
of a result first discovered by Mees [95], [96]. The formula-
tion adopted is convenient from the mathematical view-
point, since the determinant (35) has no singularities ex-
cept at infinity, so that pole-zero cancellations cannot
occur. For the sake of physical intuition, however, it is
better to rewrite (35) in terms of admittance or impedance
matrices. Making use of (27) and (28) we get

det(Z,+27,)=0
det(Y,+Y,)=0

(36)
where

Z, =diag[Z(w— jo + kay)]

Y, = diag[¥(w — jo + kw,)] (37)

and Z(w), Y(w) are the conventional impedance and ad-
mittance matrix of the linear subnetwork. The eigenvalue
equation is thus seen to be formally identical, and concep-
tually similar, to the one used to find the natural frequen-
cies of a linear network. With respect to the latter case, the
conventional device impedance or admittance matrix is
replaced by the conversion matrix, while the single-
frequency impedance or admittance of the linear subnet-
work is replaced by the diagonal sum of all sideband
impedances or admittances.

From the computational viewpoint it is virtually impos-
sible to actually find all of the natural frequencies. Thus
some indirect way of establishing the nature of the solu-
tions has to be found. One possible approach is to produce
a Nyquist stability plot [94]. In the present case, this turns
out to be a much easier job than one might suspect,
because of some known properties of the determinant.
First of all, A(e + jw) is a periodic function of w, so that
[94]

Alo+ j(w+hay)] = (—-1)""”"A(o+jw) (38)

where 4 is an integer. To remove the singularity of A at
infinity (w — o0, ¢>0), we can thus replace & by the
complex function, having the same finite zeros,

nn pm

(o + jw)|A(s + jw) (39)

za(o+jw>=exp[—
0
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which is periodic in « with period w,. From Nyquist’s
~equation [97], the number of natural frequencies lying in
the region [0 < w < w,, o > 0] is then given by the number
of clockwise encirclements of the origin made by Fy( jw) as
w is swept from 0 to w,. It is assumed that the steady state
considered is not a bifurcation point (see Section VI-B), so
that Fy(jw) # 0. Finally note that [94]
F(o - jo) = B (o + joo) (40)
so that only the range [0, w, /2] need be investigated.

Of course in practice the user does not have to actually
draw the Nyquist plot and count the encirclements: all this
can be effectively done by the computer, and user interac-
tion is reduced to a printed line on output reporting the
total number of unstable natural frequencies. Furthermore,
since the calculation is highly repetitive and easily vectoriz-
able, it can be performed most efficiently on a supercom-
puter, typically in a fraction of a second in most practical
cases. Thus it is actually possible to complement a
general-purpose analysis and optimization program by an
algorithm for local stability analysis in a way completely
transparent to the user. v

B. Global Stability

We first derive a global stability picture for a simple
specific circuit by performing a large number of local
stability analyses. Then we develop a systematic approach
to global stability based on bifurcation theory, and show
that in the particular case under examination the two sets
of results strictly agree.

Let us consider once again the regenerative frequency
divider introduced in Section III. Fig. 3 shows a bifurca-
tion diagram for this circuit, which is drawn in terms of

Bifurcation diagram of the active frequency divider shown in Fig. 1.

the quantity

Ny 172
= ( Z;uXkuz) (41)

versus available input power. The state variables are cho-
sen as the FET gate and drain voltages (Fig. 1).

" To find this plot, the divider was first optimized for a
0-dB gain at an input power of 6 mW at 9.4 GHz, which
yielded point A. This point is obviously associated with
another steady state, which we name A, having exactly the
same harmonics except for a sign reversal of the odd ones:
Finally, a third operating point, named B, was found at
the same power level by a harmonic-balance analysis of
the circuit with a zero starting point. The curves were then
generated by a continuation method (e.g., [33], [35]), and
the stability of a large number of points was checked by

~ the Nyquist approach. The results of this analysis are

reported in Fig. 3. Note that between points I, and I,
three solution branches exist. Two of them are superim-
posed in the figure, and correspond to the usual bistable
divider operation with a 180° phase shift between the two
otherwise identical stable states. The third one is indicated
as “multiplier branch” in the figure because of the total
absence of any odd harmonics in the steady state. This can
be expected to be unstable on a physical ground, since the
pumped nonlinear device must produce a negative resis-
tance, and thus unstable eigenvalues, for the onset of
frequency division to take place.

This kind of analysis may be produced in a much more
systematic way making use of the principles of bifurcation
theory [86]. For a parameterized nonlinear system, bifurca-
tions are defined as the states corresponding to those
parameter values for which system stability undergoes an
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“abrupt qualitative change; that is, the real part of one (at
least) natural frequency changes sign. For a circuit depend-
ing on a free parameter p, the existence of a bifurcation at
p = pp requires that (5) and (35) be simultaneously satis-
fied with ¢ = 0, so that the mathematical conditions defin-
ing a bifurcation are

E(X,pp)=0
A(jew, X, pp) =0 (42)
Z—Z(PB)*O. (43)

The topological as well as the stability-exchange proper-
ties of bifurcations in nonlinear systems have been studied
very extensively under very broad assumptions which cer-
tainly warrant the application of the results to microwave
circuits [86]. A simplified classification of the fundamental
types of bifurcations (which are essentially the interesting
ones for microwave applications) is given below [98).

The bifurcations of periodic solutions of period T, are
considered first. We denote a periodic steady state by .S,
where k is the number of unstable natural frequencies and
m indicates a period mT; (1 understood). Then the follow-
ing fundamental types of bifurcations are possible [99]:

1) D-Type (Double-Point Bifurcation): A simple real nat-
ural frequency crosses the origin at p = py, so that equa-
tions (42) are satisfied with w = 0. The exchange of stabil-
ity is defined by

WSHiSS 1S +S (44)

where the states appearing first (second) on both sides of
the arrows correspond to each other.

Special Case of D-Type (Regular Turning Point): This
is the same as 1), but the creation or annihilation of two
periodic states takes place at p=py. The exchange of
stability is defined by

¢S, 1S+H,S

(45)

where ¢ denotes the absence of solutions.

2) I-Type (Period-Doubling Bifurcation): Two simple
complex-conjugate natural frequencies of the form o +
Jjwe /2 cross the imaginary axis at p = pp, so that (42) are
satisfied with w =4 w,/2. The exchange of stability is
defined by

WSS 1S+2 .82 (46)

Note that o + jw,/2 is in fact the same solution of the
characteristic equation (35) because of the periodicity of A.
This explains the subscript k£ +1 in the first term on the
right-hand side of (46).

3) Hopf-Type (Spurious-Exciting Bifurcation): Two sim-
ple complex-conjugate natural frequencies cross the imag-
inary axis at p = pp, so that (42) are satisfied with 0 < ||
< w, /2. The exchange of stability is defined by

S5 425+, (CLOSED CURVE) (47)

where the closed curve represents a quasi-periodic regime
which is stable for k =0 and unstable otherwise.
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Because of (40), A(0) and A(jw,/2) are real quantities.
This means that (42) is a system of N +1 real equations in
N +1 real unknowns X, pp for D- and I-type bifurcations,
and is a system of N+2 real equations in N +2 real
unknowns X, pp, w in the case of Hopf bifurcations (N
given by (7)). Thus the system is always well conditioned
from a mathematical viewpoint. This also explains why
1)--3) represent the fundamental bifurcations: the existence
of such bifurcations is mathematically possible in generic
situations. On the other hand, more complex kinds of
bifurcations requiring additional constraints to be imposed
on the same variables appearing in (42) (e.g., w = w, /4 for
a period-quadrupling bifurcation) will only exist under
exceptional circumstances.

The condition (43) (often referred to as the condition for
strict loss of stability) must be checked at any solution of
(42) to ensure that the solution itself actually represents a
bifurcation. It is virtually impossible to do this directly,
because the computation of do/dp requires a knowledge
of the third-order partial derivatives of the circuit equa-
tions [86], [100]. Fortunately, the Nyquist analysis de-
scribed in Section VI-A allows (43) to be checked by
elementary methods. In fact, all we need do is to show that
the Nyquist plot actually crosses the origin at p = p,, i€,
lies on opposite sides of the origin at p = p, + 8p (8p < pp)
in the neighborhood of + w. In particular, this implies that
the real quantities A[0, X(p), p] and A[jw,/2, X(p), p]
change sign at p=pp in the cases of D- and I-type
bifurcations, respectively.

The preceding argument also indicates the most con-
venient way of solving the system (42): its first equation is
first solved for X(p) by a continuation method; then
A0)=0 and A(jw,/2)=0 are solved in the one-dimen-
sional manifold X(p), and A(jw)=0 is solved in the
two-dimensional manifold [w, X(p)]. The procedure is then
repeated for the bifurcating branches. Since the stability of
the circuit does not change, by definition, along a branch
not containing bifurcations, a global stability picture for
the circuit being considered is readily obtained in this way.
Note that this implies that the stability of an infinite
number of possible states becomes known by a finite
number of operations.

We now go back to the regenerative frequency divider
shown in Fig. 1 and apply the above considerations to this
circuit. In the present case, the parameter is chosen as the
available power of the pump, i.¢., p = P (mW). We are
interested in the range 0 < p < 22.

The “multiplier branch” (Fig. 3) is first determined by a
continuation method starting from p = 0. A local stability
analysis of the bias point chosen (V0=—19V, V;,,=6
V) reveals that the circuit is dc stable; thus the multiplier
branch is stable in the neighborhood of the origin. Two
solutions of the system (42) are found on the multiplier
branch within the range of interest: two I-type bifurca-
tions (points I;, I,) at p=p;=1.7 and p=p, =18.8, re-
spectively. The two-parameter bifurcation analysis re-
ported below (see Fig. 4) shows that I, I, belong to the
same eigenvalue 6 + jw, /2. Thus the multiplier branch is
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Fig. 4. Bifurcation analysis of the active frequency divider in a two- dimensional parameter space.

stable for p < p; and p > p, and unstable elsewhere. Start-
ing at p = p,, the “divider branch” is then determined by a
continuation method. This branch starts at 7, and
terminates at I,. The bifurcation at I, is supercritical, i.e.,
is described by (46) with the arrow pointing right and
k = 0. Thus the divider branch is stable in the vicinity of
the bifurcation. Two solutions of the system (42) are found
on the divider branch within the range of interest: two
D-type bifurcations corresponding to the regular turning
points D,, D; (Fig. 3). Because of (45), the divider branch
becomes unstable beyond D,. Once again, the two-dimen-
sional bifurcation analysis reported below (Fig. 4) shows
that D,, D, belong to the same real eigenvalue. Thus the
divider branch is stable beyond D,, and a narrow hyster-
esis cycle appears around the threshold. Also, the nominal
operating point A is found to be stable. Finally, frequency
division ceases at point I,, representing an I-type bifurca-
tion of the subcritical kind (i.e., described by (46) with the
arrow pointing left and £ = 0). Note that each point of the
divider branch is actually representative of two states,
differing only in the sign of the odd harmonics, and thus
associated with the same value of M.

A deeper insight into the global stability picture for the
frequency divider is provided by a bifurcation analysis in a
two-dimensional parametef space. The second parameter is
chosen as the inductance L of the feedback branch, since
feedback is expected to have a critical influence on circuit
performance. The results are reported in Fig. 4.

On the L axis (P =0) a Hopf bifurcation of the bias
point is encountered at L= L, =182 nH (Fig. 4). For
L < Ly the circuit behaves as a free-running oscillator
with a fundamental around 4.7 GHz, and is thus useless as
a frequency divider. In the region above L, the circuit is

dc-stable, and its qualitative behavior is always of the kind
depicted in Fig. 3. The loci of the four relevant bifurca-
tions I, I,, D,, D, are shown in the figure. The continuity
of the two curves shows that I,, I, are generated by the
sign reversal of the real part of the same natural frequency,
and so are D;, D,. Further note that the turning-point
curve exhibits the classic pattern of the so-called “cusp
catastrophe” [4], the cusp occurring at point C.

The overall behavior of the frequency divider is clearly
apparent at a glance from Fig. 4. Frequency division will
take place when the selected combination of inductance
and drive power falls within the “divider zone.” For any
inductance value, the left-hand border of this region repre-
sents the divider threshold. A hysteresis cycle may exist
around threshold, depending on the selected inductance
value. Above the cusp point (L > 21 nH, approximately)
hysteresis is eliminated, but threshold becomes relatively
high (around 4 dBm). On the other hand, decreasing the
inductance will lower the threshold, but at the same time a
hysteresis cycle of growing width will appear. Further-
more, the circuit will become noisier, since the conditions
for oscillation are approached.

As a final point, we shall briefly discuss the bifurcations
of static solutions of the circuit equations (X, =0 for
k # 0). In this case the fundamental bifurcations are the
D- and the Hopf-type. For microwave applications, the
latter plays an essential role in oscillator design and para-
sitic bias-circuit oscillations control in general microwave
subsystems. The former may be of interest in relation to
the design of dc-stable bias networks.

The conditions defining a bifurcation of a static solution
are obviously much simpler than (42). If X, is the dc (and
the only nonzero) component of the state vector at the
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bifurcation, we must have

EO(XO7 pB) =0

det[1,,~ S(«w, p5)Sp(w, Xo, p5)| =0 (48)

do
T #0 (9)

where § is the conventional scattering matrix of the linear
subnetwork (which may depend on the parameter p), and
S, is the small-signal scattering matrix of the nonlinear
subnetwork describing its linearized behavior around the
bias point defined by X|,.

The exchange of stability at the bifurcation is discussed
in detail in [98]. As a general rule, in the case of a simple
real eigenvalue (D-type) or of two simple complex-con-
jugate eigenvalues (Hopf-type) crossing the imaginary axis
at p = pp, supercritical bifurcated states are stable, while
subcritical ones are unstable [36].

For a D-type bifurcation (w =0), (48) is a system of
np+1 real equations in ny+1 real unknowns X, pp. In
the Hopf case, it is a system of 7, +2 real equations in
np +2 real unknowns X, pg, w. Thus the system is gener-
ally solvable from the mathematical viewpoint. The solu-
tion is now simplified by the fact that the second of egs.
(48) simply states that one of the eigenvalues (in a conven-
tional sense) of the matrix S, must be equal to 1 at the
bifurcation. Thus a convenient way of solving (48) is now
as follows: i) the first of (48) is solved for Xy(p) by a
continuation method; ii) to find D-type bifurcations, the
one-dimensional manifold X (p) is searched for the points
pp at which one eigenvalue of S5, becomes unity; iii) to
find Hopf-type bifurcations the two-dimensional manifold
fw, X,(p)] is searched for those points (w, pp) at which
one eigenvalue of SS;, becomes unity. To verify (49) we
only have to check that the magnitude of the above-men-
tioned eigenvalue is <1 at p; —8p and >1 at pp+ dp(8p
<< pp), or conversely.

C. Stability Analysis in the Time Domain

In principle, a similar stability analysis can also be
carried out by time-domain techniques.

Let us assume, for instance, that the circuit is described
by the set of evolution equations (1). Static (dc) solutions
may be obtained by setting dx, /dt = du /dt =0 in (1) and
then solving the resulting system of nonlinear algebraic
equations. The original system is then linearized in the
neighborhood of any dc solution to find the corresponding
natural frequencies. The latter are given by the eigenvalues
of the Jacobian of the right-hand side of (1) with respect to
the state variables, evaluated in equilibrium conditions.
Periodic steady-state solutions X(¢) must first be de-
termined by the techniques described in Section II-A. The
system (1) is then linearized in the neighborhood of %(¢)
and the evolution of a small perturbation Ax(¢) is studied
by Floquet analysis [86]. This means that by further
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numerical integration one has to derive the monodromy
matrix defining the change of the perturbation across one
period T; of the steady-state:

Ax(t+T,) =®(T,) Ax(2). (50)

The eigenvalues A of ®(7;) then yield the natural frequen-
cies through the relationship

A=exp{(o+ ju)T,}.

(51)

While the above procedure represents the conceptual
basis for all mathematical treatments of stability, it is very
difficult to implement numerically when the size of the
system (1) is large (as is the case for practical microwave
circuits), mainly because of the lerigthy numerical integra-
tions involved.

For this reason a true stability analysis is often replaced
by a transient analysis [101], that is, a full numerical
integration of the evolution equations from circuit turn-on
up to the achievement of a steady state. It is implied that
all natural frequencies will be excited during the transient,
so that the effects of unstable ones will show up in the
final waveforms. While this may be sufficient for many
practical purposes, a global stability picture of the kind
described in the preceding sections cannot be obtained in
this way.

VIL

In Section V we derived a generalized solution of the
frequency-conversion (mixer) problem by injecting a small
RF deterministic signal into a nonlinear network support-
ing a periodic steady-state regime, and by analyzing the
resulting perturbation. When the RF source is replaced by
a set of random noise generators as the perturbing mecha-
nism, it is quite reasonable to expect that the same argu-
ments will lead to a noise analysis of the steady state. Of
course in this case the problem is much more complicated,
since the free sources can only be described in a statistical
sense. If several noise generators exist, they may not be
statistically independent, and their correlation must be
accounted for in evaluating the noise power delivered to a
prescribed load. Further correlations are established among
the noise sidebands because of the intermodulation of
noise waveforms with the periodic steady state. All such
effects are included in the general noise analysis to be
presented in this section.

Because of its practical importance, a good deal of
attention is paid to the noise problem in the technical
literature. Several authors treat the subject for specific
subsystems and with the aid of drastic simplifying assump-

NOISE

tions, often aimed at the development of closed-form

expressions highlighting some of its basic aspects [90], [92],
[102]-[109]. Both frequency-domain {110}, [111] and time-
domain techniques [112] have been proposed to model the
near-carrier noise in FET oscillators. Probably the most
advanced treatment is given by Kerr in his noise analysis
of diode mixers [74], [75], which makes use of a classic
result established by Dragone [113] to correctly represent
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the noise-sidebands correlation in the pumped diodes. The
approach described here can be considered as an extension
of Kerr’s work to include generalized circuit topologies
and multiport noisy nonlinear devices. As usual, the results
are suitable for computer implementation in a general-pur-
pose CAD environment.

Let us consider a stable steady-state solution £(#) of the
circuit equations, time-periodic of period T, = 27/w,, and
let a random perturbation dx(z) be superimposed on it.
We assume that the perturbation is Fourier-transformable
and write

dx (1) = f_ooooFx(w)exp(jwt) dw
=j(;wOZFx(w+kw0)exp{j(w+kw0)t}a’w (52)

where F (w) is a vector of Fourier transforms (divided by
2a). All vectors appearing in (52) have the same size n,
equal to the number of ports of the nonlinear (or linear)
subnetwork.

In the following, our interest will mainly be focused on
spot noise calculations, so that we shall consider noise
perturbations of the form

8x(t)=§8Xk(w)exp{j(w+kwo)t} (0<w<ay)

(53)
where, according to (52)
38X, (w) =F,(0+kay) dw. (54)

38X, (w) may be interpreted as a vector of complex am-
plitudes of “pseudosinusoidal” noise components at fre-
quency w + ke, (i-e., at the kth sideband associated with
). With the formulation adopted, the squared magnitude
of the ith element of 8X,(w) (1<i< n,) represents the
RMS value of those components of the noise waveform
dx,(¢) whose spectrum lies in a narrow band dw in the
neighborhood of w + kw,. Thus if a spectral density G,,(w)
can be associated with 8x,(¢), we have

|8Xk,(w)|2=Gx,(w+kwo)dw. (55)

To develop our noise analysis, we are going to replace
the nonlinear network under consideration by the equiv-
alent circuit shown in Fig. 5. This transformation requires
some comments.

As usual, the original circuit is first subdivided into a
linear and a nonlinear subnetwork. The vector of noise
voltages at the connecting ports is denoted by dv(¢). The
linear subnetwork is replaced by its Norton equivalent,
consisting of a noise-free network with a noise current
source connected across each port. These will be referred
to as the “linear” noise sources and their set will be
indicated by j; (¢) (see Fig. 5). The linear noise sources are
correlated, so that their statistical properties are described
in terms of an (nj, X n) spot correlation matrix €, (w). If
we adopt the representation (53), that is,

g (1) =Zk:JLk(w)exp{j(w+kwo)t} (56)
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Fig. 5. Equivalent representation of a noisy nonlinear network.

then the correlation properties of the sidebands are ex-
pressed by

<JLp(‘*’)JLﬂ;(‘*’)>=3f@L(w+P‘*’o) (57)

where & is Kronecker’s symbol, { ) indicates the statistical
mean, and * the Hermitian conjugate. An important point
is that a general computer algorithm, allowing €; () to be
derived for a completely arbitrary configuration of the
linear subnetwork, is available in the technical literature
[114].

In Fig. 5 the noisy nonlinear subnetwork is dealt with in
a similar way, i.e., is replaced by a noise-free nonlinear
multiport with a noise current source connected across
each port. Such sources account for the noise generated
inside the nonlinear subnetwork and their properties are
affected by the steady-state regime supported by the cir-
cuit, as described below. They will be referred to as the
“nonlinear” noise sources, and their set will be denoted by
Jj(t) (see Fig. 5).

Note that the representation adopted for the nonlinear
subnetwork does not have the meaning of a Norton
equivalent circuit. In fact, the Norton transformation is
based on the superposition principle, and its applicability
is strictly confined to linear circuits. To produce the topol-
ogy shown in Fig. 5, we simply open an additional external
port of the nonlinear subnetwork at the terminals of each
noise source which is not naturally connected across a
port. For each fictitious port thus created, we must also
add an open-circuited port to the linear subnetwork and a
new state variable in the equations (2). Thus a noise
analysis, although possible in general, may force us to
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work with a number of ports n,, larger than required by a
conventional nonlinear analysis not including noise.

We next derive the correlation properties of the nonlin-
ear noise sources. Let us first focus our attention on the
bias point of the nonlinear subnetwork, which is defined
by the subset X;, of the state vector X. If the nonlinear
subnetwork were operated under dc conditions at the bias
point X, its noise behavior would be described by a set of
noise sources, namely j;.(X,,?), depending on X, in a
deterministic way. The statistical properties of j,. can be
derived in the usual way from the physical properties of
the nonlinear subnetwork; for the most common micro-
wave devices they are thoroughly described in the technical
literature [115]. In particular, we will regard as known the
spot correlation matrix of j;., namely %,.(X,, »).

The dynamic case can now be studied by a quasi-static
assumption. Following [113], we think of noise as arising
from the superposition of statistically independent random
disturbances whose duration is much smaller than 7. The
statistical properties are determined by the probability
distribution of such elementary events, whose magnitude is
proportional to a deterministic function of X,. The peri-
odic steady state may thus be treated as a time-dependent
bias point: in this case the magnitude of the probability
distribution is expressed by the same function with X,
replaced by %(¢), and becomes a periodic function of time.
We thus write

J(#) = h(t)js.(X,, ) (58)

where h(z) is diagonal of size nj, is time-periodic of
period T, and has nonnegative elements. To evaluate h(¢),
we consider the ith element of j;. (1<i<np), and denote
by Gy.(X,,w) its spectral density. The corresponding
(normalized) available noise power is given by

Noei = [ Gael( Xo, 0) de (59)
B

where B is the noise bandwidth of interest. In the dynamic

case, this power will be modulated by a periodic function

of time, which can be identified as h2(¢) according to (58).

Using the quasi-static assumption we thus obtain from

(59) V

N,(t) =h3(t) Ny,
= [ Goar{£(1), 0} do (60)

and finally

1<i<n,. (61)

Thus h(t) can be immediately derived once the steady
state #(¢) and the noise properties of the dc-biased nonlin-
ear subnetwork are known.
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Since h(t) is real and time-periodic, we may write

k(1) =Y H,exp( jpeot) (62)
F4
where H), is diagonal of size n,, and H _ p=H*.

Let us represent the static and dynamic noise current
waveforms by expansions similar to (56) and denote by
i1 (X, w) and J(w) their pseudosinusoidal component
amplitudes, respectively. Introducing such expansions and
(62) into (58) yields

Jp(“’) =2Hp—deck(X0>w)' (63)
k

Since the correlation properties of J;, may be expressed as

in (57) (with €, replaced by %,.), from (63) we obtain

directly

<Jp(‘*’)-’q*(°’)> = %Hp—kfdc(‘x(b w+ k“’o)Hk—q- (64)

Equation (64) shows that different sidebands of the non-
linear noise'sources are in general correlated because of the
modulation of the dc noise waveforms operated by the
periodic steady state. It is easy to check that the result
derived by Dragone [113] and used by Kerr [74], [75] can
be reobtained from (64) in the case of a set of uncorrelated
sources of white noise (%,. diagonal and independent of
w).

At this stage the noise analysis can be developed in a
straightforward way. To make the equations formally sim-
ple, we first introduce for each noise waveform of interest
the vector of the pseudosinusoidal component amplitudes
at all sidebands: for instance, for the random perturbation
dx(¢) we define

3X(w) = [3X, ()] (65)

and so forth. Such vectors satisfy a set of equations that
are formally identical to (26) and (32), that is,

3V(w)=P3X(w)

(w)=03X(w)

A; 8 (w)+ B, 8, (w)=0
where the currents at the linear subnetwork ports have

been denoted by the subscript L (see Fig. 5). From the
figure we also obtain

3, (0) =8(w)+ Jp(w)+ J(w).
Combining (66) and (67) yields

(66)

(67)

8V (w) =~ P(A,P+B,0) 'B,{J () + J(w)}. (68)
We can select the kth sideband by writing

3 (w0)=U ¥ (w) (69)

where
UkE["'O“'l 0]

"p

(70)

and 1, is an identity matrix of size n,. Because of (35),
the matrix (A4, P + B, Q) is nonsingular, and thus (68) is
meaningful at any w between 0 and w,, if the steady state
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Fig. 6. Identification of a load within the linear subnetwork.

is asymptotically stable, i.e., all its natural frequencies have
a negative real part.

To complete the noise analysis, we arbitrarily select a
resistor within the linear subnetwork, which is assigned the
meaning of load, and compute the spectral distribution of
the noise power actually delivered to this load. For this
purpose we rearrange the linear subnetwork in the way
shown in Fig. 6, and carry out a conventional linear
analysis of the (n,+1)-port network thus obtained at
w + kw,. From the admittance matrix of the (n, +1)-port,
we can readily derive a (1X 1) transadmittance matrix
Yz(w) such that

IR (w) =Yg(w+ kwy) 8V, (w) (71)

where 8I%(w) is the complex amplitude of the pseudo-
sinusoidal noise current component through R at o + kw,.
Making use of (69) and (68), we get
I (w) =T {J (w)+ J(w)} (72)
where
T,=—Yg(w+kawy,)UP(4,P+B,0) 'B,. (73)

Since the linear and nonlinear noise sources are not corre-
lated, their effects may be superimposed in power. Thus
the noise power delivered to R within a narrow frequency
band dw in the neighborhood of w + kwj is

aN () = RY8IF (&) )
= RT(J () I (0)) T
+ RT(J(w) F*(w))TF. (74)
If we now partition T, into (1 X n,) submatrices, namely
T, =(T},] (75)
and recall (57) and (64), we get the final result
dN, (@)

= RZTkp(éL(w + P‘*’o)Tk’;
r

+RY TkP{ZHp_S‘fDC(XO, o+ st)Hs_q}Tk";.

e (76)

By means of (76), noise in a nonlinear network is essen-
tially described as a frequency conversion effect, with each
T,, playing the role of a sideband-to-sideband conversion
matrix. In particular, the quantity

deO(‘*’) = RTko(fL(‘*’)Tk"f)

+RE T, B8, (Xo, ) HFTE, (1)
P:q
represents the contribution due to the up-conversion of
baseband noise to the kth sideband. If the usual trunca-
tion is adopted, all summation indexes in (76) and (77)
range from — Ny to Ny,

Besides the noise power described by (76), having a
continuous spectral distribution, a finite power is obvi-
ously delivered to the load at each harmonic of the steady
state. This can be expressed as

1
S(kao) = S RI¥a(keo)®(X) [ (78)
where X is the state vector, and @, is the kth harmonic of
the first of (2) computed in steady-state conditions. Equa-
tion (78) represents a set of discrete spectral lines that are
superimposed to the continuous spectrum (76).

VIIIL

1t has now become evident from the preceding discus-
sion that nonlinear analysis and design problems concern-
ing realistic microwave circuits may be large-size ones
from the numerical standpoint. Many kinds of passive
components require the use of sophisticated modeling
techniques, while the nonlinear equivalent circuits of even
the simplest microwave devices often contains several non-
linear elements such as resistors or dependent sources.
Basic operations such as analysis and optimization require
expensive search algorithms involving repeated multi-
frequency analyses of the linear subnetwork. The number
of unknowns may be quite large, especially for broad-band
operation, not to mention the case of multitone excitation
such as in mixer or intermodulation problems. Stability
and noise analyses require large-order matrices to be re-
peatedly evaluated and inverted. In order to implement all
this, from the viewpoint of both software development and
systematic use, it is rather natural to resort to the highest
available computational power, namely, supercomputers.

For the time being, let us make use of a simple perfor-
mance-oriented definition of a supercomputer, i.e., some-
thing that is roughly two orders of magnitude faster than a
VAX and has several millions 64-bits words of central
semiconductor memory. There are many reasons why such
a machine can be attractive for nonlinear microwave CAD
purposes, and some of them are conceptually more rele-
vant than mere computational speedup. Of course, the
latter is important by itself: some advanced nonlinear
applications may require such a long CPU time as to make
the use of a medium-size mainframe definitely impractical.

There is, however, much more than that. The computer-
aided solution of any problem of applied science always

IMPACT OF SUPERCOMPUTERS
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requires some amount of analytical preprocessing. There is
always a tradeoff between mathematical and numerical
work, and the use of sophisticated analytic and program-
ming techniques is often convenient in order to alleviate
the computational burden committed to the machine. On
supercomputers, the opposite is often true: in fact, not
only are they fast, but the simpler program architecture,
the faster they perform, as we shall discuss later. Thus it
may be convenient to waive a consistent part of the
programmer’s task and to rely upon the number-crunching
capabilities of the computer. Simple, straightforward solu-
tion approaches which would be out of the question on
medium-size scalar machines may now become the most
natural way to solve the problem. An example concerning
nonlinear microwave circuits under multiple-frequency ex-
citation is reported in [59].

The availability of virtually unlimited memory resources
is another important point. Once again, the classic tradeoff
between memory occupation and computational speed may
be pushed all the way in favour of numerical efficiency. To
do the same on smaller-size machines one must often
resort to virtual memory, which can slow down computa-
tion in a significant way.

A. Vector Processors

The increased computational power of supercomputers
relies upon two fundamental mechanisms: technological
advance and architectural evolution. The former is trans-
parent to the user, and will not be considered here, but the
latter is not, in the sense that codes should usually be
matched to computer architecture in order to achieve
maximum efficiency. In turn, architectural evolution with
respect to the classic Von Neumann structure is essentially
based on one of the fundamental concepts of modern
computer science, namely, parallel processing.

As a matter of fact, most present-day supercomputers
belong to the special class of vector processors [116], [117].
Vector processors are really available commercially and
are relatively widespread; they feature the highest avail-
able computational power and are easily accessible to any
user for general-purpose scientific calculations. In such
machines, parallel processing is implemented by a number
of basic mechanisms, the most important of which are
listed below:

® pipelining of vector operations;

* chaining of vector operations;

e parallel execution of independent operations (arith-
metic, logical, address calculations, - - -) on indepen-
dent functional units;

e parallel execution of vector and scalar operations;

¢ multitasking.

Pipelining is the fundamental aspect, and is schemati-
cally illustrated in Fig. 7 [118], [119]. Let us consider a

binary operation of the form
c(1)=4(1) OP B(I) (79)

where OP is any arithmetic or logicai operator and I is an

361

VECTOR REGISTER VECTOR REGISTER

AT T — T

A(L+N+2) B(1+N+2)

SEGMENTED  [C(1+N), | 1ST SEGMENT
FUNCT | ONAL

UNIT e —
PERFORM I NG

THE C(1+2) v.r | (N=1)TH SEGMENT
OPERAT I ON

oP C(1+1)w | NTH SEGMENT

VECTOR REGISTER

AT T

c(h)
c(1-1)

A

Fig. 7. Schematic illustration of the pipeline concept. C(J); denotes
the kth step of the computation of 4(J) OP B(J) in the segmented
functional unit.

integer index. This operation is actually executed through
a number of elemeritary steps, each requiring one clock
period, such as sign control, exponent fitting, addition of
mantissas, and normalization, for a floating-point ad-
dition. The functional unit is thus subdivided into a corre-
sponding number of cascaded subunits or segments, each
performing one of the elementary steps.

Now assume that the code is carrying out a sequence of
identical operations for increasing values of I, namely a
vector operation, so that operands are continuously fed to
the functional unit at a rate of a couple for each clock
period. Once the entire process has been initialized, that is,
after the vector startup time has elapsed, results will also
be produced at the same rate. Thus the vector processor
will execute binary vector operations at a peak speed,
measured in floating-point operations per second, or flops,
equal to the inverse of the clock period.

However, pipelining is not restricted to the binary case
illustrated in Fig. 7: in fact, more complex vector oper-
ations can be executed in parallel in the pipeline sense (one
result per clock period) by an additional mechanism, named
chaining [117). The concept is very simple: as soon as a
result becomes available in a vector register (strictly speak-
ing, one cycle later), it can be fed to the input of a
different functional unit to serve as an operand for the
subsequent operation. In this way the vector hardware may
be configured as an extended functional unit with several
inputs, where a multiple-operand arithmetic or logical
operation can be pipelined. )

All this is obviously handled by the compiler and is
transparent to the user, except for one aspect: the calcula-
tions to be performed by the program should be organized
into the largest possible groups of consecutive operations
of the same kind, that is, into vector operations of the
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maximum possible length. This is what we mean by
vectorizing a program.

The other mechanisms mentioned above are in fact
something different, in that they implement a more con-
ventional concept of parallelism, namely, different func-
tional units simultaneously execute independent oper-
ations on different operands. Multitasking is similar except
that parallelism is exploited here at the highest level: if the
system is a multiprocessor, the user’s program can be
organized into sections to be run concurrently on different
CPU’s. Organizing the tasks and synchronizing them when
several ones merge again into a single instruction stream is
up to the user, and can be done at the FORTRAN
programming level by suitable calls to specialized system
subroutines.

Note that the above discussion is somewhat Cray-ori-
ented since this is the system family the authors are most
familiar with; however, the principles are substantially
valid for many different kinds of vector processors.

The same discussion makes it clear that program vector-
ization is the most important action to be taken in order to
effectively exploit the computational power of a vector
supercomputer. The same code on the same machine can
run in a CPU time ranging from, say, 1 to 10 in relative
terms depending on its degree of vectorization. This has a
direct impact on computer costs, too: in fact, the user will
pay exactly the same amount for one CPU second regard-
less of whether his calculations are vectorized or fully
scalar. This means that any speedup obtained by vectoriza-
-tion will result in a cost reduction by exactly the same
amount. An important related point is that vectorizing
invariably means making a program simpler and better
structured, which is clearly shown by the fact that
vectorized programs are usually more efficient from the
scalar viewpoint, too [122], [123]. This happens because
vectorizing leads to the elimination of a number of non-
productive but time-consuming procedures such as if
statements and subroutine calls. Of course this does not
imply that vectorization is good for scalar machines, since
it always results in a large increase of memory require-
ments. In fact, space has to be provided to store the entire
vector operands, which must be physically available, while
in the scalar approach subsequent elements may overwrite
the same memory locations, since results are produced
sequentially rather than in parallel.

B. Supercomputers in Microwave CAD

Going back to our main subject, it is quite obvious that
a nonlinear microwave CAD program is a natural candi-
date for an efficient vectorization. For instance, a circuit
optimization is usually carried out by some sort of iterative
method, and is thus a highly repetitive job, which will
spend most of the CPU time in executing exactly the same
set of operations over and over again. Thus in principle
vectorizing just becomes matter of organizing such oper-
ations in a convenient order.

Let us focus our attention on a relatively expensive
numerical procedure such as the optimization of a nonlin-
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TABLEII
PERFORMANCE OF A TYPICAL VECTOR PROCESSOR (CRAY X-MP)

1) FFT (Ng = NUMBER OF SAMPLING POINTS)

Ng = 32 Ns = 1024
VECTOR SPEEDUP 7.3 14.7
COMBINED SPEEDUP
WITH RESPECT TO THE 19 3 39 0
CDC 7600
2) SAMPLING OF NONL INFAR RESPONSE
Ng = 32 Ne = 1024
VECTOR SPEEDUP 6.5 11.9
COMBINED SPEEDUP
WITH RESPECT TO THE 18.9 34.7
CDC 7600
3) MULTIFREQUENCY LINEAR SUBNETWORK ANALYSIS
(N; = NUMBER OF FREQUENCIES)
Ny =7 N, = 49
VECTOR SPEEDUP 2.9 5.9
COMBINED SPEEDUP
WITH RESPECT TO THE 14 6 29.7
CDC 7600

ear circuit by the harmonic-balance approach. Three mech-
anisms are essentially responsible for the computer time
requirement of this kind of job, namely, sampling the
time-domain response of the nonlinear subnetwork,
Fourier transforming it, and analyzing the linear subnet-
work at all the design frequencies and their harmonics.
The relative importance of these aspects is strongly job-
dependent; however, they are usually responsible for more
than 90 percent of the overall time, so this is where the
vectorization effort has to be spent.

Typical speedups measured on a Cray X-MP system are
reported in Table II. Of course the FFT represents the
casiest and most rewarding job since fully vectorized and
very efficient subroutines performing this algorithm are
available in all supercomputer libraries.

As for the nonlinear response, vectorization here is up to
the user, but is still easy and may be carried out by direct
application of elementary principles. The scalar approach
would be to code the nonlinear subnetwork equations in a
subroutine yielding the response at a given time, and then
to repeatedly call it at all sampling instants. In a vector
logic one has to move the iteration inside the subroutine,
so that the calculation of the entire response becomes a
unique vector operation; in other words all sampling points
are processed in parallel in the pipeline sense.

The approach to the linear subnetwork analysis is con-
ceptually similar: a sequence of single-frequency analyses
is changed into a single multifrequency analysis; that is,
any aspect of network performance is treated simulta-
neously at all frequencies of interest. In this case, to
enhance the degree of vectorization and thus to improve
the overall performance, some further actions can be taken,
such as the parallel computation of all physically similar
circuit components, and the parallel execution of topologi-
cally similar component connections. These ideas have
been discussed in detail in the recent technical literature
[123].



RIZZOLI AND NERI: NONLINEAR MICROWAVE CAD TECHNIQUES

The results shown in Table II include a comparison with
the performance of an equivalent scalar code on a classic
scalar mainframe such as the Cyber 76. Very similar results
are obtained with modern scalar systems such as the VAX
8800. The figures clearly show that supercomputers can
indeed be used to carry out large applications with fast job
turnaround and good cost-to-performance ratio and have
the potential to bridge the gap between linear and nonlin-
ear microwave CAD techniques.
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